

140, 5050 – 106th Avenue SE Calgary, Alberta T2C 5E9 Tel: 1-403-238-9510 *E-mail: jana*@iqwater.ca

April 27th, 2022 File No. W2020-019.2021

FERNIE ALPINE RESORT UTILITIES CORPORATION

1505 17th Avenue SW Calgary, Alberta T2T 0E2

Attention: Mr. Patrick Majer

Dear Mr. Majer:

Re: FERNIE ALPINE RESORT WASTEWATER TREATMENT PLANT 2021 ANNUAL REPORT

Forwarded is a pdf copy of the 2021 Annual Wastewater Report for the above property.

Should you have any questions, please call us at 403-238-9510 or email to jana@iqwater.ca.

Sincerely,

IQWATER INC.

un

Jana Zverina, M.Sc., P.Eng.

2021 WASTEWATER TREATMENT PLANT ANNUAL REPORT

FERNIE ALPINE RESORT FERNIE, B.C.

Prepared for:

FERNIE ALPINE RESORT UTILITIES CORPORATION

1505-17th Avenue SW Calgary, Alberta T2T 0E2

Prepared by:

IQWATER INC.

140, 5050 – 106th Avenue SE Calgary, Alberta T2C 5E9 Tel: 1-403-238-9510 *E-mail: jana@iqwater.ca*

> April 27^{tht}, 2022 Report # W2020-019.2021

TABLE OF CONTENTS

Page No.

1.0	INTRODUCTION 1.1 BACKGROUND	1
2.0	REGISTRATION REQUIREMENTS2.1PARAMETERS2.2REGISTRATION LETTER OPERATING CONDITIONS2.3REPORTING REQUIREMENTS2.4SAMPLING FREQUENCY	2 2 3 3
3.0	SEWAGE FLOW RECORDS	5
4.0	SEWAGE FLOW PROJECTION	14
5.0	OVERVIEW OF ELK RIVER SAMPLE RESULTS	17
6.0	OVERVIEW OF INFLUENT TEST RESULTS	22
7.0	OVERVIEW OF EFFLUENT RESULTS 7.1 RESULTS ANALYSIS 7.2 COMPLIANCE SUMMARY	24 24 25
8.0	SLUDGE PRODUCTION AND DISPOSAL	28
9.0	BYPASS EVENTS	29
10.0	PLANT IMPROVEMENTS	30
11.0	PHOSPHORUS REMOVAL	31
12.0	ASSESSMENT SUMMARY	35
13.0	AUTHORITIZATION AND CLOSING	37
14.0	REFERENCES	38
13.0	TERMS AND CONDITIONS	39
	 ENDICES Table 11 – Fernie Alpine Report Estimated Sewage Generation Fernie Alpine Resort Map 2021 Water Report 2021 WWTP Report 	

- WWTP Registration No: 17139
- Seasonal Laboratory Test Results
- Acute Toxicity Test Results

1.0 INTRODUCTION

1.1 BACKGROUND

The following annual report for the Wastewater Treatment Plant at Fernie Alpine Resort (FAR) operated by Fernie Alpine Resort Utilities Corporation (FARUC) is compiled in accordance with the requirements of the Municipal Sewage Regulation (MSR). This report covers the 2021 calendar year.

Due to the nature of the resort the plant is subjected to a large seasonal swing in utilization with the winter ski period imposing the highest demands. The critical time for sewage flows at the resort is from mid-December to the end of March during the peak ski season. Summer utilization of the treatment work is generally low.

FARUC treats its wastewater at a tertiary treatment plant designed to remove BOD₅, suspended solids, ammonia, and phosphorous. Wastewater is disinfected with ultraviolet (UV) lamps prior to discharge into the Elk River.

Plant effluent quality has been high during the year. There is a clearly decreasing trend in orthophosphorus and total phosphorus levels during the last several years. All the results for orthophosphorus and total phosphorus were below the MSR discharge limits. FARUC began a monitoring and Clearpac dosing investigation in the winter of 2007 to reduce effluent phosphorus concentrations. The reduction program has shown significant improvement of phosphorus levels in plant effluent. This work will continue to maintain all the ortho and total phosphorus concentrations below the discharge limits.

2.0 **REGISTRATION REQUIREMENTS**

This section describes operating requirements as specified in the Resorts of the Canadian Rockies Inc.'s (RCRI) Registration Letter RE 17139 issued on September 30th, 2002. The registration describes parameters that must be tested for operating conditions, sampling frequency, and sampling locations.

2.1 PARAMETERS

The following parameters are to be monitored:

рН	Field Sample
Temperature	Field Sample, measured in Celsius
Flow	Field Samples, measured as m ³ /d
BOD₅	Five day biochemical oxygen demand, measured in mg/l
TSS	Total suspended solids or non-filterable residue, measured in mg/l
NH ₃	Ammonia concentration, expressed as nitrogen in mg/l
NO3	Nitrate concentration, expressed as nitrogen in mg/l
NO ₂	Nitrite concentration, expressed as nitrogen in mg/l
Total-P	Total phosphorous concentration, measured in mg/l
Ortho-P	Orthophosphate concentration, measured in mg/l
Fecal coliform	Bacterial concentration, measured as colony forming units per 100ml
Toxicity Bioassay	96 hour toxicity test, recorded as pass or fail

2.2 REGISTRATION LETTER OPERATING CONDITIONS

The treatment plant is required to meet the effluent discharge conditions outlined in Table 1.

		
Parameter	Limit	Unit
Flow	1280	m³/d
BOD₅	45	mg/l
TSS	45	mg/l
Total-P	1.0	mg/l
Ortho-P	0.5	mg/l
Coliforms*	200	CFU/100ml
Toxicity Bioassay	pass	n/a

Table 1 Effluent Limits

*Limit for recreational waters only, not included in RCRI registration letter

Primary screenings and dewatered sludge are to be disposed of at the Crowsnest Pass/Pincher Creek Landfill. Disposal at other sites requires authorization under the Waste Management Act.

Operators at the plant are required to be certified in accordance with Section 22 of the MSR.

2.3 **REPORTING REQUIREMENTS**

An annual report demonstrating the performance of the facility is to be publicly posted on the Internet within 120 days of the end of the calendar year. The report must include tabulated standards and results for all test samples, interpretation of the results, an indication of the state of compliance of the facility, and the total wastewater flow for the reported period.

In addition the report must also include the following:

- Notification of significant operating events including discharge variances outside given limits,
- Recommendations for operational or facility modifications,
- Notification of proposed or implemented plant modifications,
- Details of proposed or implemented water conservation measures,
- A plan indicating existing and proposed developments,
- A comparison of projected and actual wastewater flows,
- Projected wastewater flows resulting from proposed development compared to the remaining waste water treatment plant (WWTP) capacity, and
- A comparison of water supply and wastewater flows.

As with the previous Annual Reports, this report includes additional information on wasted sludge volumes.

2.4 SAMPLING FREQUENCY

The MSR Registration requires RCR and, as such, the contract operator FARUC, to undertake the environmental testing program outlined in Table 2 below.

Elk River testing requires that a minimum of 18 samples annually are taken from each of the upstream, initial dilution zone (IDZ) and downstream river locations, relative to the outfall diffuser. The sampling locations were identified in the April 2001 Environmental Impact Study.

A minimum of 12 influent samples are required for BOD₅ and TSS. Flow data is to be collected continuously.

The intent of the environmental testing procedure outlined in Table 2 is to collect influent and effluent samples during peak demand periods as indicated by resort bookings. To correspond with peak plant loading, river samples are to be collected on the same day as effluent samples.

In addition to the program and tests listed above, other in-plant testing is needed to permit operational control of the process as shown in Table 2 below.

Parameter	Location									
Parameter	Elk River	QTY	Influent	QTY	Effluent	QTY				
рН	WS/G	18	/	/	M/G, WS/G	25				
Temp	WS/G	18	/	/	/	/				
Flow	/	/	D/C	n/a	D/C	n/a				
BOD₅	/	/	M/G	12	M/G, WS/G	25				
TSS	WS/G	18	M/G	12	M/G, WS/G, D/C	25				
NH3-N	WS/G	18	/	/	M/G, WS/G	25				
NO ₃ -N	WS/G	18	/	/	M/G, WS/G	25				
NO ₂ -N	WS/G	18	/	/	M/G, WS/G	25				
Total-P	WS/G	18	/	/	M/G, WS/G	25				
Ortho-P	WS/G	18	/	/	M/G, WS/G	25				
Fecal Coliform	WS/G	18	/	/	M/G, WS/G	25				
Toxicity Bioassay	/	/	/	/	3 Y/G	3				

Table 2 Sampling Location/Frequency/Type

Where:

WS/G	Weekly seasonal grab sampling, required for three six-week periods
	during the winter peak, the spring after ice-out, and in the fall when river
	turbidity and flows are low.

- D/C Daily continuous sampling using an on-line instrument and data logger.M/G Monthly grab sample (not required when weekly seasonal testing is taking place).
- 3Y/G Three samples per year to correspond with WS/G sampling periods.

3.0 SEWAGE FLOW RECORDS

This section provides data and analysis regarding the plant influent and effluent flows, and compares 2021 data to previous years.

Total effluent flow from the WWTP for all of 2021 was recorded from the effluent weir type flow meter as 130,032 m³ and the average was 351.7 m³ per day. The graph below shows the 2021 total effluent flow per month vs total influent for the plant. The effluent flow follows very closely the influent.

Available monthly total effluent flow meter records for 2021 are provided in Figure 1a.

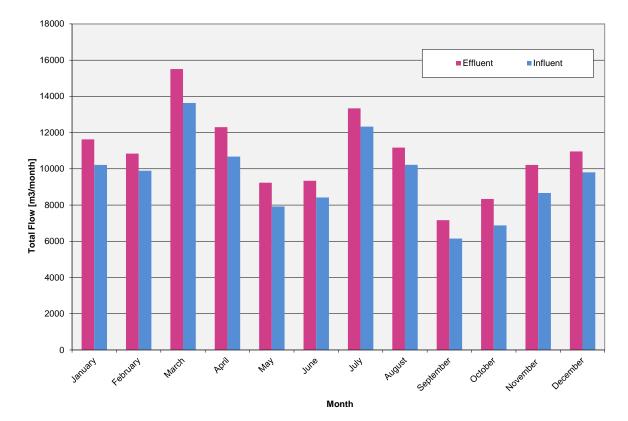


Figure 1a Effluent and Influent Flow Meter Monthly Flow Totals

The ski resort operates with higher winter and late spring sewage flows (January to March) than during any other period. The average daily plant flow through January, February and March of 2021 was 420.8 m³/day compared to the previous year's (2020) January to March average flow at 344.6 m³/day. However, it should be noted that the January to March 2020 flow was the lowest when compared to the previous years, likely due to a significant decrease in March due to Covid-19 restrictions. The levels, which increased in 2021, were comparable to pre-Covid levels.

Also, as shown on the 2021 graph above, there is a noticeable increase in flow over the summer holiday months, July and August. This trend has been noticed over the last several years.

2021 WASTEWATER TREATMENT PLANT ANNUAL REPORT Fernie Alpine Resort April 27th, 2022

The average daily plant flow through January, February and March of 2019 was 449 m³/day and 2018 was 403 m³/day. The average daily flow was 443 m³/day in 2017, 452 m³/day in 2016, 378 m³/day in 2015, 484 m³/day in 2014, 485 m³/day in 2013, the average daily flow could not be calculated in 2012 but it was 479 m³/day for the same time period in 2011, compared to 412 m³/day over the same period in 2010.

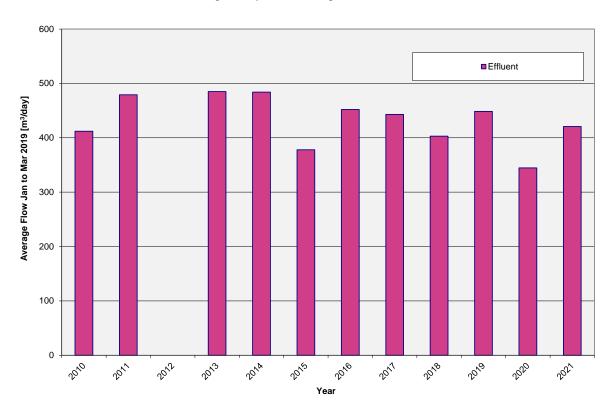


Figure 1b Average Daily Flow during Jan – Mar Period

Peak flow for the year reached 810 m³/day on November 16, 2021, which was 36 % below the allowable daily limit of 1,280 m³/day.

Historical peak flows are as follows: 2020 (925 m³/day), 2019 (1043 m³/day), 2018 (687 m³/day), 2017 (1,095 m³/day), 2016 (844 m³/day), 2015 (1,058 m³/day), 2014 (1,036 m³/day), 2013 (1,181 m³/day), 2012 (811 m³/day), 2011 (989 m³/day) and 2010 (823 m³/day) and 2009 (1,178 m³/day). Usually, the peak flow day occurred during the heavy ski season, which was to be expected. In 2021, the peak flow day occurred in November which likely corresponds with the beginning of the season after the Covid-19 slow down.

A summary of sewage flow for years 2003 through 2021 is provided in Table 3 and Figures 2 and 3:

Year	Sewage Flow	Days Over		
Tear	Total	Average	Peak	Limit
2003	137,035	375	1,244	0
2004	151,815	414	1,307	1
2005	125,699	344	1,293	1
2006	127,202	348	1,058	0
2007	144,480	396	1,177	0
2008	135,767	372	873	0
2009	113,336	311	1,178	0
2010	104,815	287	823	0
2011	90,213* (122,275) ¹	335	989 ²	0
2012	62,509** (122,610) ¹	335	811 ²	0
2013	121,982	335	1,181	0
2014	125,437	344	1,036	0
2015	90,931	250	1,058	0
2016	108,326	296	844	0
2017	108,695	296	1,095	0
2018	105,073	288	687	0
2019	105,748	290	1043	0
2020	101,640	274	925	0
2021	130,032	352	810	0

<u>Table 3</u> 2003 – 2021 Flow Comparisons

* not including part of Sept and all of Oct, Nov, and Dec 2011

** not including all of Jan, Feb, part of Aug, and all of Sept, Oct, and Nov 2012

1 (data) in brackets – estimate based on daily average

² the number does not reflect a true peak as all the data was not available during high flow months

2004 to 2012

Higher flows in 2004 were caused by severe infiltration through the collection system.

Lower flows in 2005 and 2006 can also be attributed to the fact that a lot of sludge together with water was trucked away from the WWTP itself due to the volumes of sewage the existing plant would not handle without an equalization tank.

Through 2008 total and average flow decreased somewhat from 2007, there were no instances where flow exceeded the 1,280 m³/day registration limit, compared to one day in each of 2004 and 2005. Peak flow dropped due to full operation of the equalizing tank and collection system improvements to eliminate storm water infiltration.

The average flow for 2009 further decreased from 2008 (372 m³/day down to 311 m³/day) and there were no instances where the flow exceeded the 1,280 m³/day. The peak flow increased from 2008 but is comparable to the other years.

The average flow for 2010 further decreased from 2009 (311 m³/day down to 287 m³/day) and there were no instances where the flow exceeded the 1,280 m³/day. The peak flow decreased from 2009 and is comparable to 2008.

The average flow for 2011 had increased slightly from 2010 (287 m³/day) and 2009 (311 m³/day) and there were no instances where the flow exceeded the 1,280 m³/day limit. The peak flow had increased slightly from 2010; however it was still lower than 2008 and prior. Please note, the average flow was calculated for the data available and may not have been representative of the whole year as October, November and December were usually lower flow months.

Note that historically from 2004 to 2010 the peak flow occurred systematically in January, February, March and December, which was consistent with the facility operations. Although some data was missing, the values for 2011 were considered "as is". However, there was more data missing in 2012. In addition, the missing data was among others in January and February, which were historically two out of four highest flows in a year. January was on average the highest month.

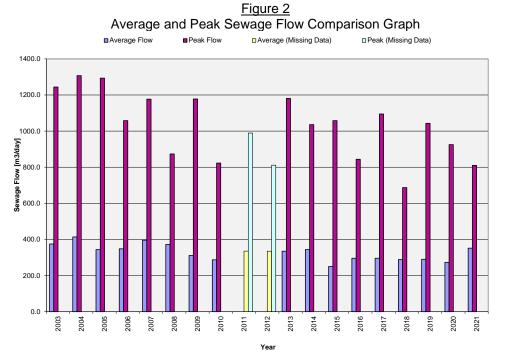
The average flow for 2012 was the same as observed in 2011 (335 m³/day) which had increased slightly from 2010 (287 m³/day) and 2009 (311 m³/day). There were no instances where the flow exceeded the registration limit of 1,280 m³/day; however, there was no data for January and February (two out of four peak months in a year). The peak flow of 811 m³/day was recorded in December, which was one of the four peak flow months, and therefore it was reasonable to assume that it would be close to or somewhat above the same number in January or February. Based on the remaining measurements it was unlikely that the peak in January or February would exceed the registration limit.

Please note, the average flow was calculated for the data available and may not have been representative of the whole year as January, February, part of August and all of September, October, and November information was not available. This average flow was used to estimate the total yearly effluent flow, which likely represented a reasonable estimate.

The records for 2011 and 2012 were incomplete due to the effluent flow meter failure from a lightning strike. The meter was repaired and fully functional for 2013.

2013 to 2021

In 2021 the average flow was 351.7 m³/day, which is more than during previous several years and similar to 2013 and 2014. While the peak month is usually December, in 2021 the peak was in November followed by December and April. There are no instances where the flow exceeded the plant maximum allowable flow and daily discharge of 1,280 m³/day.


The average flow for 2020 was low and well below previous several years, which can likely be attributed to the Covid-19 restrictions implemented in March 2020. There were no instances where the flow exceeded the plant maximum allowable flow and daily discharge of 1,280 m³/day. The peak flow was higher than that of 2018 but very similar to 2013 to 2015 and 2017. Contrary to the previous years, when the highest peak was in December, in 2020 the highest peak was recorded in February.

The highest month in 2019 for average flows was in February followed by January and December.

Between 2013 and 2021 the average sewage flow showed a decreasing trend with slightly higher value in 2021. There is a decreasing trend in peak values between 2013 and 2021 as shown on graphs below.

Daily wastewater flows are strongly correlated to weather and the number of day-users at the resort with the peak ski season having the highest flows. Summer flow results from non-skiing related recreational activities, generally hiking or mountain biking events. The lowest plant flow is experienced in the shoulder season periods (April to June and September to November).

The approximately 85 permanent residents in addition to several year-round restaurants providing services to casual visitors ensure that the sewage flows never drop to zero. Figure 2 provides monthly average and peak day sewage flows since 2003.

* Note that the values for 2011 and 2012 may not be representative as some of the effluent flow data for these years are missing

Page 9 of 38

2021 WASTEWATER TREATMENT PLANT ANNUAL REPORT Fernie Alpine Resort April 27th, 2022

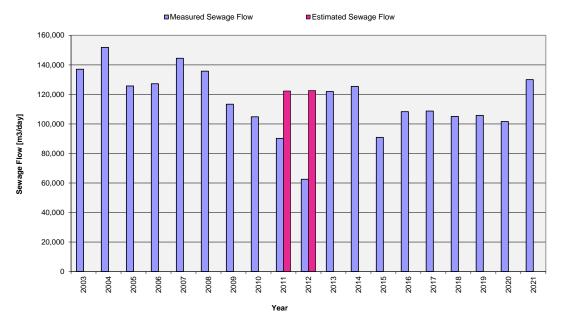
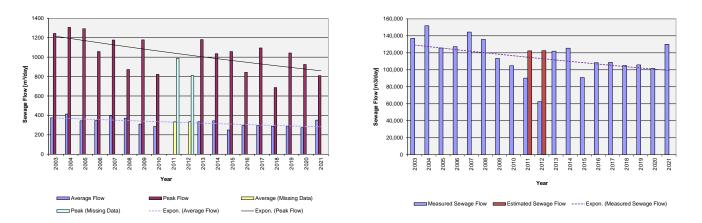
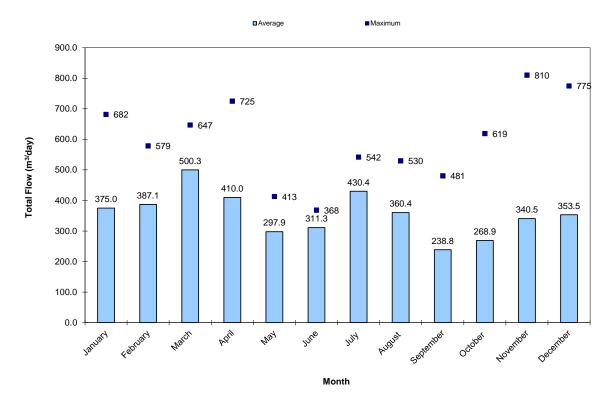




Figure 3 Total Sewage Flow Graph

Figure 3a and Figure 3b Trendlines for Average, Peak, and Total Sewage Flow Graphs

Sewage flow trend is shown on Fig 3a and 3b above, note that total sewage production has in general a declining trend with relatively stable flow numbers over the last five years.

<u>Figure 4</u> 2021 Sewage Effluent Average and Peak Flows by Month

The Resort's ongoing program to reduce sewer infiltration is demonstrated by the reduction in return flow to the plant vs. total water usage. In 2007 the total sewage flow was equal to 92% of the total water production; however this number may not be representative as the total water production values were incomplete. In 2008 this figure decreased to 51%, which is considered to be a more representative. In 2009, this figure decreased even further to 45%. In 2012, the total sewage flow was equal to 54% of the total water production, and was consistent with 2010 and 2011. This again is slightly higher than in 2009 but similar to 2008. In 2013, the total sewage flow was 41% of the total water production, which was the lowest observed to date. In 2014, the total sewage flow was 53% of the total water production which was a slight increase from 2013 but comparable to that of 2008, 2010, 2011 and 2012. There was a slight decrease in 2015. The total sewage flow was 48% of the total water production which is comparable to 2013. The total sewage flow for 2016 was 47% which was very similar to that found in 2015. The total sewage flow for 2017, 2018, 2019, and 2020 was 67%, 64%, 59%, and 77%. The total sewage flow for 2021 was 77% which is the same as found in 2020.

Note that in general, with the exception of 2007, there was relatively steady trend in % of return flow vs total water usage until 2017, there is an increasing trend recorded between 2017 and 2021. The percent sewage flow vs the water production for each year since 2007 has been plotted in Figure 5 below.

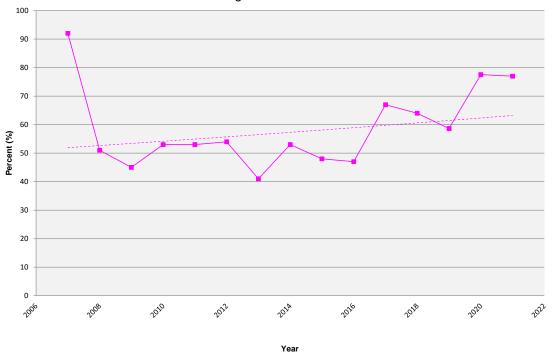
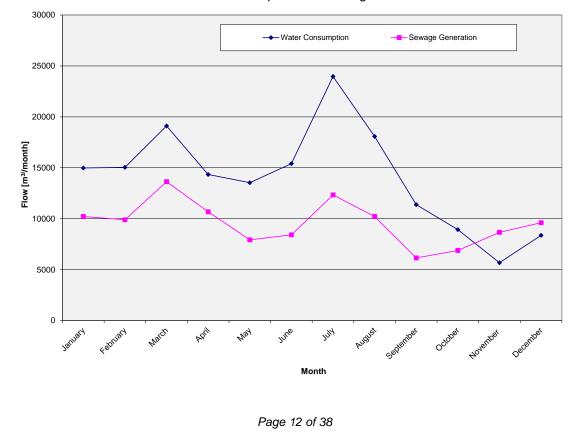



Figure 5 Percent Sewage Flow vs Water Production

Water use at the hill is compared to the amount of sewage received at the WWTP in Figure 6 for 2021.

Figure 6 2021 Water Consumption and Sewage Generation

The impact of rainfall and snowmelt on sewage flow has decreased each year since 2007 and 2017 as a result of system improvements, the use of water restrictive fixtures and the infiltration reduction program. There is slightly increasing trend shown between 2017 and 2021.

4.0 SEWAGE FLOW PROJECTION

This section shows projected wastewater flow for 2007 through 2021 based on current development plans and provides an estimate of remaining plant capacity.

Based on unit generation rates provided in the BC Health Act for various lodging types, the estimated highest day wastewater generation for 2011 would have been 1302.3 m³/day. Using the actual peak flow of 811 m³/day, a correction factor of 0.62 was calculated. Averaged correction factor for 2007, 2008, 2009, 2010, 2011, 2012, 2013 and 2014 was calculated and multiplied by the future estimated flows to more accurately reflect potential resort sewage generation rates.

In 2007, 2008, 2009, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, and 2020 respectively, the correction factors were 1.20, 0.89, 1.14, 0.65, 0.76, 0.62, 0.91, 080, 0.81, 0.65, 0.84, 0.51, 0.78, and 0.80, which showed that the resort had reduced the impact of both storm water infiltration and reduced peak flows.

Projected daily peak wastewater flows until 2010 by year were provided in Table 4 for the Resort's planned expansions. The highest water generation for 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2021 was calculated based on the BC Health Act (refer to Table 11 enclosed at the end of this report). The future flows will be re-evaluated if further expansion occurs. The resort is committed to continuing the initiative on introducing a storm water infiltration program, flow restrictive devices, and other water consumption measures.

Flow restrictive devices are intended to be utilized in all new construction and the infiltration/ rehabilitation program is expected to be ongoing. The intent is to reduce the amount of per unit sewage generation and to reduce the amount of ground and surface water infiltration into the sewer system. FARUC will monitor sewage flows to determine the efficacy of the program.

Based on a report prepared by Urban Systems, Wastewater Treatment Plant Assessment, prepared in October 2017, it was concluded that even with the additional expansion of the proposed Timberlanding, 27 residential lots (Phase 1) possibly in 2018 FARUC may not require an increase to permit discharge above the current limit of 1280 m³/day if the flow restriction measures prove sustainable. Note that Phase 2 development may need a licence amendment to increase the maximum daily flow from 1280 m³ to a maximum plant capacity of 1760 m³. Sewage discharge rates will be monitored and an application will be submitted to increase the maximum daily discharge when warranted.

Phase 1 of the Timberlanding Development, all 27 lots have been sold. All but 3 of the lots have approval to begin constructed. 14 lots are connected to services. We anticipate all will be connected by next year. Phase 2 Timberlanding development, has not been included in the current calculations yet, after registration, a further 20 single family lots and 2 multi-family lots will be included.

Based on the 2021 flow data, the plant has an unused capacity of 470 m³/day due to the flow saving measures. While the levels seem to have rebounded from the Covid-19 restrictions, this still needs to be closely monitored during 2022 and further considered when adding additional development.

2021 WASTEWATER TREATMENT PLANT ANNUAL REPORT Fernie Alpine Resort April 27th, 2022

Table 4
Projected Peak Flows: 2007-2021

	2007	2008	2009	2010	2011	2012
Estimated Wastewater Flow (m³/day)	979.2	979.9	1032.4	1261.4	1302.3	1302.3
Actual and Corrected (m³/day)	1177 (a)	873 (a)	1178(a)	823 (a)	989 (a)	811 (a)

	2013	2014	2015	2016	2017	2018
Estimated Wastewater Flow (m³/day)	1302.3	1302.3	1302.3	1302.3	1302.3	1337.6
Actual and Corrected (m³/day)	1181 (a)	1036 (a)	1058 (a)	844 (a)	1095 (a)	687 (a)

	2019	2020	2021	2022
Estimated Wastewater Flow (m³/day)	1344.5*	1344.5*	1344.5*	1344.5*
Actual and Corrected (m³/day)	1043 (a)	925 (a)	810 (a)	1062 (b)

*Note that all 27 lots for Timberlanding Phase 1 are included in the Estimated Flow (only 9 including 2 double lots or 11 single lots are either developed, under development or beginning construction)

- (a) actual peak flow
- (b) corrected daily peak flows by the averaged correction faction for 2007 to 2021 and correction factor

2007	correction factor of	1177/979.2	1.2
2008		873/979.9	0.89
2009		1178/1032.4	1.14
2010		823/1261.4	0.65
2011		989/1302.3	0.76
2012		811*/1302.3	0.62
2013		1181/1302.3	0.91
2014		1036/1302.3	0.8
2015		1058/1302.3	0.81
2016		844/1302.3	0.65
2017		1095/1302.3	0.84
2018		687/1337.6	0.51
2019		1043/1344.5	0.78
2020		925/1344.5	0.69
2021		810/1344.5	0.60
	AVERAGE		0.79

*Since only two out of the four months with the historically highest peaks were recorded, this number may be underestimated.

2021 WASTEWATER TREATMENT PLANT ANNUAL REPORT Fernie Alpine Resort April 27th, 2022

Note that based on the historical data and the above projections the actual flows based on Phase 1 Timberlanding expansion should not exceed the permitted discharge of $1280 \text{ m}^3/\text{d}$.

Graphs showing estimated vs actual historical peak flows and general trending of the correction factor are shown below.

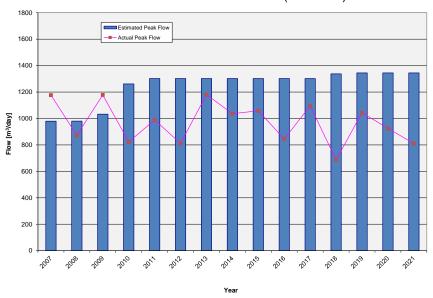
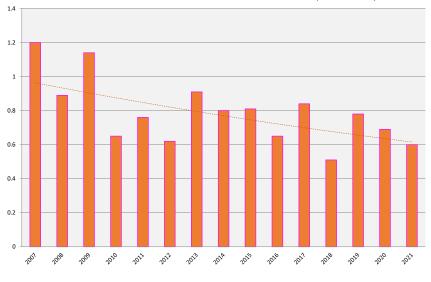



Figure 7a Estimated vs Actual Peak Flows (Historical)

Figure 7b Correction Factor and Trendline for Peak Flow (Historical)

Year

5.0 OVERVIEW OF ELK RIVER SAMPLE RESULTS

This section provides data and analysis for the Elk River samples taken during 2021.

Table 5 provides a summary record of the Elk River test results for the time period from January 4, 2021 to December 29, 2021.

Sample Date Ammonia-N		Ortho-P (Coli	Coliform - Fecal			Total P mg/L				
(yyyy-mm-dd)	UP	IDZ	DN	UP	IDZ	DN	UP	IDZ	DN	UP	IDZ	DN
2021-01-04	0.05	0.05	0.05	0.005	0.009	0.005	1	4	1	0.005	0.018	0.005
2021-01-11	0.05	0.05	0.25	0.005	0.024	0.005	6	3	11	0.005	0.029	0.005
2021-01-18	0.05	0.05	0.05	0.005	0.041	0.005	11	2	9	0.006	0.044	0.005
2021-03-29	0.05	0.05	0.05	0.005	0.013	0.005	7	6	11	0.011	0.023	0.012
2021-04-05	0.05	0.05	0.05	0.005	0.012	0.005	2	1	4	0.013	0.021	0.011
2021-04-12	0.05	0.05	0.05	0.005	0.067	0.005	1	1	1	0.005	0.078	0.005
2021-04-19	0.05	0.05	0.05	0.005	0.011	0.005	3	1	6	0.005	0.010	0.009
2021-04-28	0.05	0.05	0.05	0.005	0.010	0.005	1	1	6	0.005	0.014	0.005
2021-05-05	0.05	0.05	0.05	0.005	0.005	0.005	2	1	1	0.013	0.008	0.011
2021-10-06	0.05	0.05	0.05	0.005	0.043	0.005	1	2	1	0.005	0.046	0.005
2021-10-13	0.05	0.05	0.05	0.005	0.057	0.005	1	18	1	0.005	0.049	0.005
2021-10-20	0.05	0.05	0.05	0.005	0.055	0.005	1	14	1	0.005	0.050	0.005
2021-10-27	0.05	0.10	0.05	0.007	0.015	0.005	12	92	18	0.016	0.043	0.008
2021-11-03	0.05	0.05	0.05	0.005	0.014	0.005	6	7	8	0.005	0.021	0.006
2021-11-12	0.05	0.05	0.05	0.005	0.030	0.005	3	3	3	0.005	0.026	0.005
2021-12-15	0.0052	< 0.005	0.0086	0.0044	0.0219	0.0038	8	1	9	0.0059	0.0208	0.0054
2021-12-22	0.0052	0.0127	0.0050	0.0035	0.0690	0.0038	5	27	3	0.0048	0.0713	0.0049
2021-12-29	0.0216	0.0433	-	0.0022	0.0791	-	1	3	-	0.0060	0.0707	-
# Samples	18	18	17	18	18	17	18	18	17	18	18	17
Average	0.04	0.05	0.06	0.005	0.032	0.005	4	10	6	0.007	0.036	0.007
Maximum	0.05	0.10	0.25	0.007	0.079	0.005	12	92	18	0.016	0.078	0.012
Minimum	0.01	0.01	0.01	0.002	0.005	0.004	1	1	1	0.005	0.008	0.005

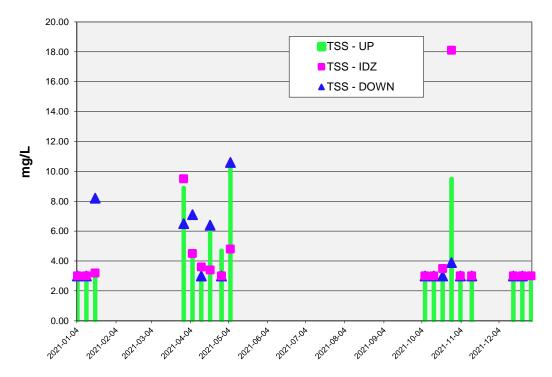
Table 5 2021 Elk River Sample Results

Light green squares show tests reported at less than the stated value, for calculations these are listed as equal to the value stated, ie. <0.05 is assumed to be 0.05

UP – Upstream

IDZ – Initial Dilution Zone

DN – Downstream


2021 WASTEWATER TREATMENT PLANT ANNUAL REPORT Fernie Alpine Resort April 27th, 2022

Sample Date	TSS			рН			N-NO ₃			N-NO ₂		
(yyyy-mm-dd)	UP	IDZ	DN	UP	IDZ	DN	UP	IDZ	DN	UP	IDZ	DN
2021-01-04	3.00	3.00	3.00	8.37	8.44	8.43	1.91	0.15	1.89	0.01	0.01	0.01
2021-01-11	3.00	3.00	3.00	8.33	8.25	8.33	2.08	3.73	2.08	0.01	0.01	0.01
2021-01-18	3.00	3.20	8.20	8.42	8.28	8.39	1.92	5.99	1.93	0.01	0.01	0.01
2021-03-29	8.90	9.50	6.50	8.19	8.04	8.19	1.91	0.08	1.92	0.01	0.01	0.01
2021-04-05	4.30	4.50	7.10	8.15	8.01	8.13	2.19	1.08	2.12	0.01	0.01	0.01
2021-04-12	3.00	3.60	3.00	8.25	8.00	8.26	2.34	9.98	2.28	0.01	0.01	0.01
2021-04-19	6.00	3.40	6.40	8.18	8.14	8.17	1.99	0.97	1.96	0.01	0.01	0.01
2021-04-28	4.70	3.00	3.00	8.25	8.09	8.29	2.22	1.21	2.19	0.01	0.01	0.01
2021-05-05	10.60	4.80	10.60	8.32	7.89	8.02	1.62	1.74	1.60	0.01	0.01	0.01
2021-10-06	3.00	3.00	3.00	8.28	8.10	8.24	2.03	3.31	2.02	0.01	0.01	0.01
2021-10-13	3.00	3.00	3.00	8.32	6.97	8.30	2.10	9.03	2.08	0.01	0.01	0.01
2021-10-20	3.00	3.50	3.00	8.40	8.32	8.41	2.09	7.79	2.09	0.01	0.01	0.01
2021-10-27	9.50	18.10	3.90	8.23	7.99	8.19	1.22	0.10	1.59	0.01	0.01	0.01
2021-11-03	3.00	3.00	3.00	8.27	8.11	8.26	1.50	0.91	1.45	0.01	0.01	0.01
2021-11-12	3.00	3.00	3.00	8.17	7.96	8.19	1.61	5.55	1.59	0.01	0.01	0.01
2021-12-15	3.00	3.00	3.00	8.31	8.18	8.34	1.67	1.59	1.66	0.0025	0.0027	0.0025
2021-12-22	3.00	3.00	3.00	8.23	7.91	8.20	1.50	13.40	1.50	0.0010	0.3910	0.0013
2021-12-29	3.00	3.00	-	8.40	8.23	-	1.69	15.50	-	0.0031	0.0685	-
# Samples	18	18	17	18	18	17	18	18	17	18	18	17
Average	4.44	4.48	4.45	8.28	8.05	8.26	1.87	4.56	1.88	0.01	0.03	0.01
Maximum	10.60	18.10	10.60	8.42	8.32	8.43	2.34	15.50	2.28	0.01	0.39	0.01
Minimum	3.00	3.00	3.00	8.15	6.97	8.02	1.22	0.08	1.45	0.00	0.00	0.00

Light green squares show tests reported at less than the stated value, for calculations these are listed as equal to the value stated, ie. <0.05 is assumed to be 0.05 UP – Upstream IDZ – Initial Dilution Zone DN – Downstream

Outfall results slightly exceeded the upstream (background) results on January 18, March 29, April 5, April 12, October 20, and October 27 in 2021. Although below detection limit or low upstream and at the outfall, downstream TSS results were elevated above both on January 18, April 5, and April 19, 2021. High results were recorded at the outfall on October 27th, 2021 at 18.10 mg/L, however, the results downstream were lower than upstream.

Note that there were no changes higher than 5 mg/L (B.C. Approved Water Quality Guidelines; Aquatic Life, Wildlife and Agriculture, August 2019; further BC AWQG) between the upstream and downstream values due to the effluent discharge with the exception of January 18th, 2021 with a very minimal change of 5.2 mg/L. The effluent results throughout the season were below their respective detection limits including January 18th, 2021.

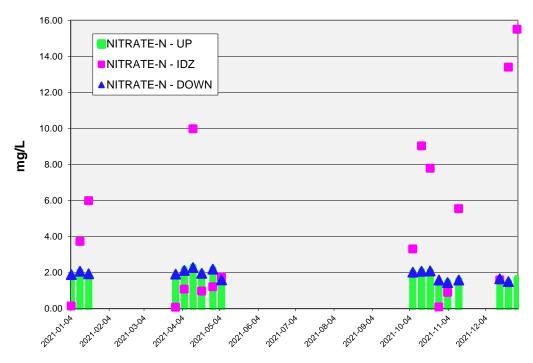
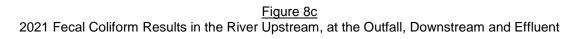
<u>Figure 8a</u> 2021 TSS Results in the River Upstream, at the Outfall and Downstream

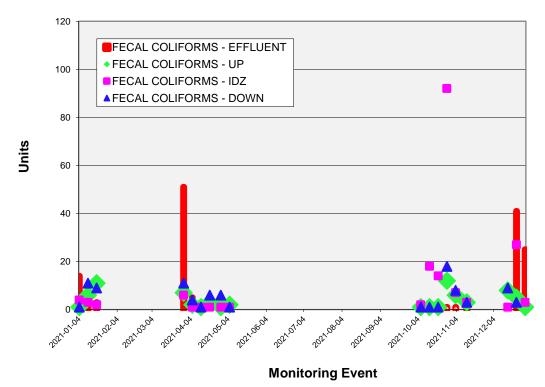
Monitoring Event

Nitrate-N & Nitrite-N

The highest levels of nitrate-n (15.5 mg/L) were observed at the outfall on December 29th, 2021. The levels of nitrate-n up-stream on the same day were significantly lower (1.69 mg/L) and the down-stream was not tested due to unsafe access. The level of nitrate-n in the effluent on the same day was 34.2 mg/L, which is consistent with other weekly samples from the plant effluent and suggests the effluent was not the cause of the elevate nitrate levels at the outfall. Note that all the downstream results were very similar to the background levels and within the BC AWQG Long Term Chronic threshold at 3.0 mg/L.

The majority of the downstream nitrite-n results were below the detection limits and, all the downstream results were below the BC AWQG Long Term Chronic threshold at 0.02 mg/L (the most stringent guideline for chloride < 2 mg/L).


Figure 8b 2021 Nitrate-N Results in the River Upstream, at the Outfall and Downstream

Monitoring Event

Fecal Coliform

Elevated levels of coliforms were tested at the outfall on October 13, October 20, October 27, and December 22, 2021 when compared to the background location (upstream). The highest levels measured at the outfall were on October 27th. The levels were also slightly elevated upstream and down-stream. The coliform levels in the effluent on the same day were <1 CFU/100mL

No significant changes were observed in <u>ammonia-n</u>, <u>pH</u> or <u>phosphorus</u> concentrations during any of the river sample periods. Majority of ammonia-n samples downstream were below their detection limits and/or well below the BC AWQG guideline). In general, ortho and total phosphorus was highest in the outfall but the majority of the results from down-stream were below laboratory detection limits and/or within the background (upstream) values.

Overall, the analyzed concentrations remain constant between the upstream (US) sampling zone and the downstream (DS) sampling zone. The data indicates that the plant's effluent appears not to have any adverse effect on background nutrient concentrations in the Elk River.

<u>**pH**</u> results in the downstream samples followed closely those in the upstream with no guideline (6.5 - 9.0) exceedance.

6.0 OVERVIEW OF INFLUENT TEST RESULTS

This section provides data and analysis for the plant influent (raw sewage) samples taken during 2021.

Table 6 provides a summary record of the influent test results for the period of January 4, 2021 to December 29, 2021.

Data	2021 Influent Results Summary								
Date	Flow	Temp	рΗ	TSS	BOD	COD			
(yyyy/mm/dd)	m³/d	С		mg/L	mg/L	mg/L			
2021-01-04	458	-2.0	7.86	292.0	166.0	-			
2021-01-11	391	0.0	7.96	145.0	128.0	-			
2021-01-18	363	-7.0	8.05	217.0	108.0	-			
2021-02-22	460	2.0	7.86	159.0	106.0	-			
2021-03-29	544	-5.0	7.35	140.0	93.0	-			
2021-04-05	634	0.0	7.20	126.0	90.0	-			
2021-04-12	317	0.0	7.17	270.0	57.0	-			
2021-04-19	293	0.0	7.42	56.8	43.0	-			
2021-04-28	321	8.0	7.55	150.0	62.0	-			
2021-05-05	257	6.0	8.18	43.8	37.0	-			
2021-06-23	256	15.0	7.56	42.6	36.0	-			
2021-07-14	481	14.0	7.62	97.1	56.0	-			
2021-08-31	239	12.0	7.70	672	179.0	-			
2021-09-15	174	13.0	7.20	211.0	179.0	-			
2021-10-06	137	9.0	7.58	262.0	263.0	-			
2021-10-13	156	0.0	7.83	68.7	58.0	-			
2021-10-20	156	-1.0	8.02	130.0	54.0	-			
2021-10-27	266	3.0	7.95	51.7	20.8	-			
2021-11-03	171	2.0	8.13	35.6	54.0	-			
2021-11-12	216	0.0	8.03	127	95.0	-			
2021-12-15	240	-9.0	7.77	78.5	81.6	-			
2021-12-22	482	-3.0	8.27	218.0	266.0	-			
2021-12-29	421	-29.0	8.28	259.0	219.0	-			
# Samples	23	23	23	23	23	0			
Average	323	1.2	7.76	167.5	106.6	-			
High	634	15	8.28	672.0	266.0	-			
Low	137	-29	7.17	35.6	20.8	-			

<u>Table 6</u> 2021 Influent Results

<u>BOD</u>

Inlet BOD ranged from 20.8 mg/L to 266.0 mg/L with an average of 106.6 mg/L. The average influent sewage strength was measured at 109.6 mg/L in 2020, 90.0 mg/L in 2019, 102 mg/L in 2018, 114.5 mg/L in 2017, 95.8 mg/L in 2016, 190.1 mg/L in 2015, 92.3 mg/L in 2014, 106 mg/L in 2013, 220 mg/L in 2012, 108 mg/L in 2011, 142 mg/L in 2010, 143 mg/L in 2009, 99 mg/L in 2008 and 488 mg/L in 2007. Since a typical municipal waste water BOD is in the range of 100 to 300 mg/L, it is assumed that the average BOD is well within the expected level.

2021 WASTEWATER TREATMENT PLANT ANNUAL REPORT Fernie Alpine Resort April 27th, 2022

TSS values ranged in the influent from 35.6 to 672.0 mg/L with an average of 167.5 compared to 2020 average at 162.7 mg/L. High value was recorded on August 31, 2021. The remaining values fall well within the expected municipal wastewater values between 100 and 350 mg/L.

7.0 OVERVIEW OF EFFLUENT RESULTS

This section provides data and analysis for the effluent (treated) samples and plant flows for 2021.

A total of 388 effluent samples were collected and analyzed for TSS; 23 of them were samples that were laboratory tested for TSS in 2021. 23 samples were laboratory tested for BOD₅, ortho-phosphate, total phosphate, fecal coliforms in 2021. 3 samples were laboratory tested for 96-hr LC50 Bioassay.

Effluent samples were collected on the same dates as influent samples to permit an evaluation of plant performance. Table 7 summarizes the laboratory effluent test results for 2021.

	2021 Effluent Results Summary											
Date	Flow	Temp	NH ₃ -N	BOD	COD	P-OP04	Coliforms Fecal	Total P	TSS	pН	NO₃-N	NO ₂ -N
(yyyy/mm/dd)	m³/d	C	mg/L	mg/L	mg/L	mg/L	cfu/100ml	mg/L	mg/L		mg/L	mg/L
2021-01-04	535	-2.0	0.050	3.4	21	0.118	14	0.301	3.0	8.16	28.6	0.05
2021-01-11	416	0.0	0.050	2.0	11	0.235	3	0.275	3.0	7.74	43.5	0.05
2021-01-18	418	-7.0	0.050	2.0	15	0.183	3	0.257	3.0	8.09	39.9	0.05
2021-02-22	502	2.0	0.050	2.0	10	0.161	2	0.203	3.0	7.95	39.2	0.05
2021-03-29	644	-5.0	0.050	2.0	10	0.403	51	0.413	3.0	7.83	17.5	0.01
2021-04-05	725	0.0	0.050	2.0	12	0.135	5	0.140	3.0	7.70	21.5	0.05
2021-04-12	409	0.0	0.050	2.0	10	0.131	1	0.169	3.0	7.78	20.9	0.01
2021-04-19	340	0.0	0.050	2.0	10	0.057	1	0.064	3.0	7.69	17.4	0.01
2021-04-28	358	8.0	0.050	2.0	10	0.080	1	0.099	3.0	7.89	16.0	0.01
2021-05-05	286	6.0	0.050	2.0	13	0.064	1	0.069	4.2	8.16	14.8	0.01
2021-06-23	272	15.0	0.050	2.3	-	0.163	1	0.209	3.0	8.06	15.5	0.0
2021-07-14	467	14.0	0.050	2.0	-	0.091	3	0.087	3.0	7.69	19.3	0.0
2021-08-31	334	12.0	0.050	2.0	-	0.239	1	0.254	3.0	7.73	41.3	0.0
2021-09-15	202	13.0	0.050	2.0	-	0.076	1	0.070	3.0	7.76	30.4	0.10
2021-10-06	165	9.0	0.050	2.0	10	0.068	1	0.210	3.1	7.94	22.2	0.0
2021-10-13	233	0.0	0.050	2.0	10	0.088	1	0.095	3.0	7.95	23.4	0.0
2021-10-20	216	-1.0	0.050	2.0	10	0.223	1	0.267	3.0	8.09	24.2	0.0
2021-10-27	338	3.0	0.050	2.0	10	0.163	1	0.181	3.0	7.93	14.5	0.0
2021-11-03	283	2.0	0.050	2.0	10	0.013	1	0.032	3.0	7.88	11.2	0.0
2021-11-12	238	0.0	0.050	2.0	10	0.085	1	0.072	3.0	7.98	15.7	0.0
2021-12-15	332	-9.0	0.020	2.0	10	0.370	1	0.415	3.0	8.08	26.3	0.0
2021-12-22	521	-3.0	0.047	2.0	16	0.369	41	0.440	3.0	7.52	40.9	2.1
2021-12-29	435	-29.0	0.913	2.0	26	0.305	25	0.310	3.1	8.05	34.2	0.4
# Samples	23	23	23	23	23	23	23	23	23	23	23	1
Average	377	1.2	0.09	2.1	12	0.166	7	0.2	3	7.90	25.6	0.1
High	725	15.0	0.91	3.4	26	0.403	51	0.4	4	8.16	43.5	2.1
_OW	165	-29.0	0.02	2.0	10	0.013	1	0.0	3	7.52	11.2	0.0
_imit	1280	N/A	N/A		N/A	0.5	200	1			N/A	N/A
# Over Limit	0	N/A	N/A	0	N/A	0	0	0	0	N/A	N/A	N/A

Table 7 2021 Effluent Results

Notes: 1. Light green squares show tests reported at less than the stated value, for calculations these are listed as equal to the value stated, ie. <0.05 is assumed to be 0.05

2. Geometric mean is used for coliform results

7.1 RESULTS ANALYSIS

BOD

The average BOD in the effluent was 2.1 mg/L in 2021, which was low and similar to the previous years (all but one sample were below the detection limit). Historically, the average BOD was 2.1 in 2020, 2.1 in 2019, 2.3 mg/L in 2018, 2.2 mg/L in 2015, 5.0 mg/L in 2007 and <2.0 mg/L in 2017, 2016 and between 2008 and 2014. None of the samples were over the limit.

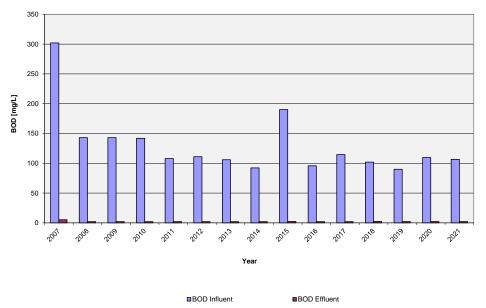


Figure 9 Historical BOD Test Results for Influent vs Effluent

Laboratory tests indicated that majority of TSS samples were below the laboratory detection at <3.0 mg/L, the average below 3 mg/L and the highest result was at 4.2 mg/L.

The plant measured TSS on a daily basis. The highest result measured at the plant was recorded on October 29, 2021 at 12.6 mg/L. Average TSS measured at the plant was at 0.67 mg/L (January 1 to December 31, 2021). All the results measured at the plant were well below the discharge limit.

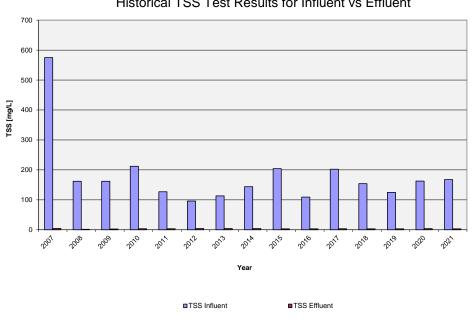


Figure 10 Historical TSS Test Results for Influent vs Effluent

Page 25 of 38

Based on the above results the plant provides excellent BOD₅ and TSS treatment with average removals of almost 00%.

Fecal Coliforms

Due to the relatively low levels of TSS, UV disinfection was able to effectively control the amount of coliform concentration found in the effluent. The UV disinfection was able to keep the coliform levels well below the acceptable limits for recreational waters (200 CFU/100 mL) throughout the year as the maximum levels in the effluent were at 51 CFU/100 mL.

The levels of coliforms tested in the Elk River outfall and downstream were all low or below the acceptable limits throughout the season.

<u>Ammonia-n</u>

The majority of the effluent ammonia-n concentrations were below the detection limit of 0.05 mg/L with the highest results recorded on December 29th, 2021 at 0.093 mg/L. It should be noted that the results at the discharge on the same date were below the 0.05 mg/L limit.

Effluent data shows the plant is effectively oxidizing ammonia nitrogen and that there is no evidence of elevated ammonia levels in the Elk River as a result of discharge from the treatment plant.

As was the case in previous years, the bioassay toxicity tests in 2021 shows that plant effluent is nontoxic. The results of these tests are shown below in Table 8.

Sample Date	Result
2021/01/11	Pass
2021/04/28	Pass
2021/10/20	Pass
2022/01/12*	Pass

<u>Table 8</u> Toxicity Test Results

Test undertaken in January 2022 is included for reference purposes only.

The levels of ortho-phosphorus and total phosphorus were below the discharge limits for 2021.

A phosphorus reduction strategy, as outlined in Section 11, was started in the winter of 2007 to address the removal of soluble phosphorus from the effluent stream. The plant has sufficient infrastructure to remove precipitated nutrients and no additional treatment processes are required.

Phosphorus in the plant effluent has no discernable impact on background nutrient levels in the Elk River, with upstream and downstream concentrations being virtually identical. A 2001 report by Highwood Environmental indicated that phosphorus releases would have a negligible impact on aquatic life in the Elk River.

FARUC completed plant modifications for phosphorous removal.

7.2 COMPLIANCE SUMMARY

Table 9 summarizes the number of days that samples exceeded MSR effluent requirements.

Parameter	Unit	MSR Limit	No. of Samples	Average Value	Max. Value	Samples Over Limit
Flow	m³/day	1280	365	351.7	810	0
BOD₅	mg/L	45	231	2.1	0.91	0
TSS	mg/L	45	388	3** (0.67)***	4**	0
Total Phosphorous	mg/L	1	231	0.2	0.4	0
Ortho Phosphate	mg/L	0.5	231	0.166	0.403	0
Fecal Coliforms*	CFU/100mL	200	231	7	51	0
96 hr LC ₅₀ Bioassay	/	Non-toxic	3.0	/	/	0

Table 9 2021 MSR Parameter Compliance

* Limit for recreational waters only, not included in FAR registration letter ** Laboratory tests only (<3 considered at 3 mg/L) *** Average of daily measurements

¹ Only 23 laboratory tests done in 2021 instead of 25

In 2021, all the samples for BOD, TSS, total phosphorus, ortho phosphorus, and fecal coliforms were below the MSR limits.

8.0 SLUDGE PRODUCTION AND DISPOSAL

This section provides data regarding the disposal of bio-solids (sludge) from the treatment facility in 2021.

Operation of the 200 m³ aerated sludge digester allowed the plant to bag and landfill all of its biosolids without resorting to vacuum truck services. All solids were transported to the Crowsnest/Pincher Creek Landfill site.

Hauling data for bagged solids are in Table 10.

Month	Vol. Bagged (m³)
January	271
February	215
March	311
April	311
May	280
June	204
July	232
August	281
September	154
October	71
November	118
December	132
Total	2571

Table 10 2021 Bagged Solids Data

The aerated sludge digester has allowed the operators to store liquid sludge during peak winter weekend periods and bag at the less active midweek times, avoiding the need for emergency vacuum truck services. Sludge bag data indicates the winter season is most active for the plant.

Please note, the calculations for bagged solids are being reviewed to ensure consistency.

9.0 BYPASS EVENTS

This section provides information about bypass events in 2021.

Bypass events result in elevated effluent suspended solids concentrations, which decrease the effectiveness of the UV disinfection system; an increase in TSS results in a simultaneous increase in coliform counts. While soluble BOD is removed though the aeration basins, the overflow of TSS also results in an increase in BOD readings due to the presence of biological floc.

There were no bypass events in 2021.

10.0 PLANT IMPROVEMENTS

In January of 2015 the plant was retrofitted with a submersible pump in the Clearwell in order to utilize Clearwell effluent to spray down clarifiers. This was done to rectify the discrepancy between influent and effluent flows and to hopefully reduce the effluent flows. As seen in Figure 1 and Table 3, the influent and effluent flows were very similar and the total effluent and average effluent decreased from 2014.

The continuous strive for the improvements of the Waste Water Treatment System by FARUC will continue along with minimization of the potable water use i.e. clear well water will be used to spray down the clarifiers instead of potable water.

There were no major plant improvements in 2021, however FARUC has recognized that the current bagger disposal method is near capacity and will need upgrading in the near future.

11.0 PHOSPHORUS REMOVAL

This section describes the phosphorus monitoring and removal strategy being implemented to bring the plant into compliance with effluent limits.

In the winter of 2007, the plant increased chemical dosing with Clearpac to reduce effluent phosphorus concentrations. By late January 2008 sample results showed marked improvement with both ortho and total phosphorus concentrations falling below discharge requirements.

The increased application of Clearpac in 2008, while effective, has been operationally costly; the relationship between chemical dose and nutrient removal will be adjusted for best efficiency.

The monitoring and removal program continued in the summer of 2008 with the plant evaluating additional removal strategies, including:

- Implementation of sampling procedures to measure total phosphorus concentrations at the following locations; auger monster (raw sewage), clarifier supernatant, RBC overflow, mix tank liquor, sand filter filtrate, filter backwash, sludge digester supernatant, and effluent,
- Evaluation of precipitant dose on effluent phosphorous levels at the current chemical addition point (clarifier overflow),
- Evaluation of changing the precipitant dose location, and
- Evaluation of alternative chemicals.

The plant planned to continually monitor and optimize coagulant dosages for improved phosphorus removal.

In 2009 upgrades to the phosphorus injections points and mixing tanks began. In the spring of 2011 the final stage of this improvement was completed with the installation of a rapid mixer and flocculation system and the relocation of the UV system. This resulted in the better usage of tertiary filtration. Longer runs, less backwash water, better phosphorus removal and better effluent quality were to be the result.

2010 data shows further improvement in phosphorus concentrations with only three exceedances for ortho phosphorus (all results for total phosphorus were below the limits) with only a 15% exceedance compared to 2008 results with 50% exceedance and to 2009 with only a 18% exceedance.

2011 data showed further improvement in phosphorus concentrations with only one exceedances for each total phosphorus and ortho-phosphorus, both on July 14th, 2011. The exceedances for ortho phosphorus was only 4% and for total phosphorus was only 13% above the limit with is less than those of previous years.

The 2012 data showed similar results to that of 2011. Two samples exceeded the limit both for ortho phosphorus. The exceedance was 14% on January 5th and 16% on December 27th. It was anticipated that the program will continue to show improvement to plan effluent quality in 2013.

The 2013 data showed slightly elevated results to that of 2012. Six samples exceeded the limit for ortho phosphorus and one for total phosphorus. The exceedance ranged from 4% to 54% for ortho phosphorus and 9% for total phosphorus. The exceedances for ortho phosphorus were observed on January 3rd, January 17th, January 23rd, February 26th, July 30th and December 26th. The exceedance for total phosphorus was observed on January 3rd.

The 2014 data showed slightly lower results than those in 2013. Only one sample for each total and ortho phosphorus were above the limits. The exceedance was 9% for ortho-phosphorus and 40% for total phosphorus. The exceedance for ortho phosphorus was observed on December 21st. The exceedance for total phosphorus was observed on January 16th.

The average total phosphorus and ortho phosphorus for 2015 were slightly lower than in 2014. Three samples exceeded the limit for ortho phosphorus and none for total phosphorus. The exceedances for ortho phosphorus were 22% on January 1st, 3% on January 7th and 19% on December 22nd.

The average total phosphorus and ortho phosphorus for 2016 were similar to previous years. One sample exceeded the limit for ortho phosphorus and one for total phosphorus. The exceedance for ortho phosphorus was 18% December 28th and for total phosphorus was it 23% on December 28th.

The results for total and ortho phosphorus have decreased and during the 2017 season, all the ortho and total phosphorus results were below the discharge limits.

The results for total phosphorus remained low (no days above the discharge limit) for 2018. There was one ortho phosphorus result from March 21st that slightly exceeded the discharge limit (0.703 mg/L vs 0.5 mg/L); however all the remaining results were below the discharge limit for the year.

In 2019 and 2020 the results for total phosphorus remained low and mostly below the discharge limit of 1 mg/L with one ortho-phosphorus exceedance in 2019 and two exceedances in 2020.

In 2021, all the results ortho- and total phosphorus were below the discharge limits.

Figure 11 Total Phosphorus Levels 2007-2021

Year

2021 WASTEWATER TREATMENT PLANT ANNUAL REPORT Fernie Alpine Resort April 27th, 2022

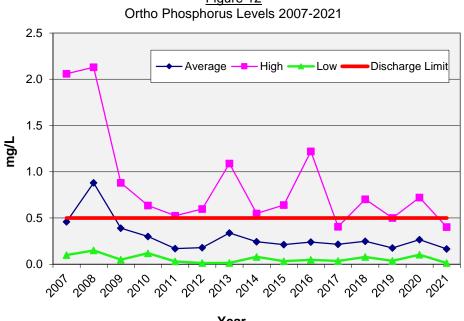
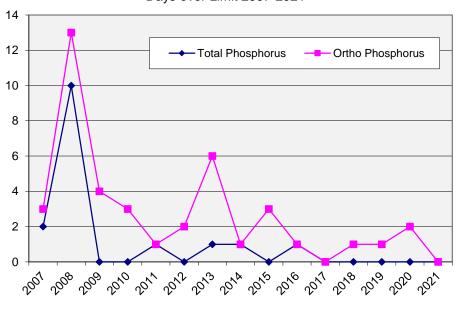



Figure 12

Year

.Figure 13 Days over Limit 2007-2021

Year

2021 WASTEWATER TREATMENT PLANT ANNUAL REPORT Fernie Alpine Resort April 27th, 2022

Phosphorus and ortho-phosphorus follow relatively closely the effluent flows in the plant as shown below.

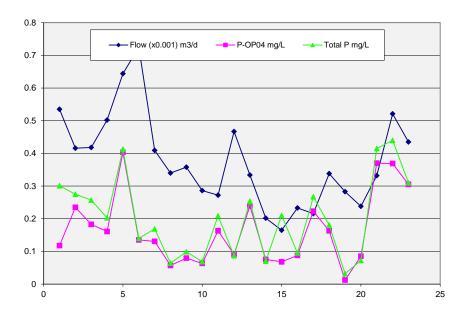


Figure 14 Total Flow and Phosphorus Levels

12.0 ASSESSMENT SUMMARY

In 2021 the number of samples for BOD, total phosphorus, ortho-phosphorus and fecal coliform did not comply with the MSR requirements; however all the results were below the discharge limits.

There does not appear to be any significant adverse impacts to the Elk River from the effluent discharged.

The plant has produced high quality effluent with <u>**BOD**</u>⁵ normally below the regulated limit of 45 mg/l and the majority of the results at less than 2 mg/L.

<u>TSS</u> results were less than laboratory detection limit for the majority samples tested and, therefore, below the MSR allowable limits. All daily samples from the plant were also low and below the limits.

<u>Nitrogen</u>

Ammonia-n results in the effluent were low with majority below the laboratory detection limits. Elevated result was detected in December 2021 with the results at the discharge below the applicable guideline.

Nitrate-n values vary between 11.2 and 43.5 mg/L, these values are fairly typical for a municipal wastewater effluent and fairly consistent throughout the years. Nitrite-n values are also very low with majority of the results below the detection limits; elevated nitrite-n results were detected in December with very low to no impact to the river downstream.

Nitrogen results indicate that the plant functioned well again in 2021.

Phosphorus and Ortho-phosphorus

There has been a significant decrease in both total phosphorus and ortho-phosphorus concentrations as well as non-compliance events during the last several years. In 2021 all the ortho- and total phosphorus concentrations were below the discharge limits.

Fecal Coliforms

Generally, fecal coliforms in the effluent conformed to the applicable discharge levels throughout the year. Elevated coliform levels in the effluent did not coincide very well with elevated levels found in Elk River at the outfall and downstream.

Operation of the sludge digester has eliminated the need for emergency liquid sludge hauling. All sludge was bagged and disposed of at the approved landfill site.

FARUC recognizes the requirement to inspect the diffuser (outfall) every five years, an inspection was completed in the summer of 2021 by Urban Systems. FARUC is currently reviewing the draft report with US.

A new subdivision has been approved and is currently under construction (Timberlanding). A capacity report from Urban Systems has been submitted and approved by the RDEK for the tying in of the subdivision into the WWTP. Details of the subdivision at build-out include 48 single family lots (27 in the first phase). The second phase includes the remaining 21 single family lots and 2 multifamily lots, each with a maximum density of approximately 56 units. Please note the first phase also includes 4 infill lots on Lower Timberline Crescent.

Analysis shows sufficient capacity in the WWTP for the development but may require an increase to the maximum allowable daily discharge at build out of Phase 2. Please note that when the WWTP was upgraded in 2005, additional capacity was built into the plant which would allow it to operate to a

2021 WASTEWATER TREATMENT PLANT ANNUAL REPORT Fernie Alpine Resort April 27th, 2022

maximum flow of 1760 m³. In order to utilize this capacity, a license amendment to increase the maximum daily flow from 1280 m³ to 1760 m³ will be required. The facility operators will have to monitor flows closely and ensure this application happens in a timely fashion. Other upgrades may be required to achieve this capacity.

2021 WASTEWATER TREATMENT PLANT ANNUAL REPORT Fernie Alpine Resort April 27th, 2022

13.0 AUTHORIZATION AND CLOSING

This report, titled 2021 Sewage Treatment Plant Annual Report, was prepared for FARUC by IQWATER Inc. The material in this report reflects the best judgement of IQWATER Inc. based on the information available at the time of preparation. Any use that a third party makes of this report, or reliance on or decisions based on it, is the responsibility of the third party. IQWATER Inc. accepts no responsibility for damages, if any, suffered by a third party as a result of decisions made or actions taken based on this report.

IQWATER INC. Il 27/04/2022) Mul Jana Zverina, M.Sc., P. Eng. Manager, Water & Wastewater

IQWater Inc. Permit #1003055

27/04/2022

iqw/jobs/W2020-019.2021

14.0 REFERENCES

- American Public Health Association, American Water Works Association and the Water Environment Federation: Standard Methods for Examination of Water and Wastewater
- American Public Health Association, American Water Works Association and Water Environment Federation. Standard Methods for the Examination of Water and Wastewater. 23rd Edition
- BC Environmental Management Act, Municipal Wastewater Regulation B.C. Reg. 87/2012, lasts Amended April 1st, 2018 by B.C. Reg. 46/2018
- BC Ministry of Health, Health Protection Branch, Sewerage System Standard Practice Manual, Version 3, September 2014
- BC Ministry of Environment & Climate Change Strategy, British Columbia Approved Water Quality Guidelines; Aquatic Life, Wildlife and Agriculture, August 2019
- Canadian Council of Ministers of the Environment. Canadian Water Quality Guidelines for the Protection of Aquatic Life
- Canadian Council of Ministers of the Environment. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses
- Canadian Council of Ministers of the Environment. Protocols Manual for Water Quality Sampling in Canada. 2011

Health Canada.Guidelines for Canadian Drinking Water Quality. September 2020

15.0 TERMS AND CONDITIONS

1. Our reports are prepared to specifically fulfil our Clients' requirements. The conclusions are based on the time limitations and scope of the services provided and information obtained from those services. The Inspector certifies that he/she has no present or contemplated future interest in the inspected property.

2. IQWATER INC. will provide skill, care and diligence in accordance with generally accepted engineering practices and procedures at the time and location in which the services are performed. With time, conditions may change and the interpretation of the findings may be altered.

3. IQWATER INC. cannot assume responsibility for any deficiency, misstatement or inaccuracy in the report resulting from the omissions or misrepresentations of persons providing information to use in the report. Any sketch appearing in or attached to the inspection report, or any statement of dimensions, capacities, quantities, or distances, are approximate and are included to assist the reader in visualizing the property.

4. The contents of the report are for the sole use of the Client. The report is the property of the Client and copies shall only be made by the Client or with the approval of the Client. IQWATER INC. is not responsible for any use of information contained in the report, or any reliance or decisions made based on it by an unauthorized third party.

5. This report represents the conditions investigated and sampled at the time of study. Some of the services performed were based on visual observations of the site and the areas surrounding the site, and our opinion cannot be extended to areas that were unavailable for direct observation.

6. The Client is responsible for all permits, authorization, or consents and giving any required notices that enable EDI to perform the services required.

IQWATER INC. may use any contractor with appropriate recognized professional status or with special skills or knowledge to assist in performing the services, at the expense of the client.

7. Any documents provided to IQWATER INC. from the Client will remain the property of the Client, and upon written request IQWATER INC. will return such documents as soon as possible. Any information or documents obtained by IQWATER INC. while performing the services requested will remain the property of IQWATER INC.

8. IQWATER INC. and the client will take reasonable care to prevent any disclosure of the reports or documents, or any information obtained or contained in the reports prepared by IQWATER INC., unless it is to the persons who require such access to the information in order to discharge their responsibilities to IQWATER INC. or as required by law.

9. This report is not intended to have any direct effect on the value of the property, but rather to provide information on apparent site conditions. The Client acknowledges that IQWATER INC. is not making any recommendations with respect to the purchase, sale, investment, or development of the property; and that all decisions associated therewith are the sole responsibility and liability of the Client. Further, IQWATER INC. assumes no responsibility for matters of legal nature affection the property or title thereto.

10. Limits of Liability – To the fullest extent permitted by law, and notwithstanding any other provision of the Service Agreement between the Client and IQWATER INC., total liability, in the aggregate, of IQWATER INC. and the IQWATER INC. officers, directors, partners, employees and sub-consultants, and any of them, to the Client and anyone claiming by or through the Client, for any and all claims, losses, costs or damages, including attorneys' fees and costs and expert-witness fees and costs of nay nature whatsoever or claims expenses resulting from or in any way related to the Project shall not exceed the limit of IQWATER's insurance in effect at the time of this report.

11. In accepting and using this report the Client agrees to indemnify and hold harmless IQWATER INC., its officers, partners, employees and consultant (collectively IQWATER INC.) from and against any and all claims, suits, demands, liabilities, losses, damages or costs, including reasonable attorney's fees and defence costs arising out of or in any way connected to the findings and results of the proposed work, whether liability arises under breach of contract or warranty, tort, including negligence, strict liability or statutory liability or any other cause of action.

12. IQWATER INC. will exercise due diligence, however, IQWATER INC. will not assume any liability for any damage to any facilities, utilities, ground or above-ground surface infrastructure within or outside the subject property boundary since any sampling if needed is intrusive in nature and damage may have to be done to obtain samples.

13. IQWATER INC. will not assume any responsibility for any actual or perceived loss of business to owner's operations as a result of the work proposed herein.

14. The governing law for this contract will be the Alberta law.

15. All claims of costs, losses, damages, etc. have to be immediately forward to IQWATER INC. insurance.

2021 WASTEWATER TREATMENT PLANT ANNUAL REPORT Fernie Alpine Resort April 27th, 2022

APPENDIX

Page 40 of 40


Table 11 - Fernie Alpine Resort Estimated Sewage Generation (m3/day)

Existing Development	Flow*		2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Existing Development	(l/unit/day)	Units	Generation (m3/day)	Generation (m3/day)	Generation (m3/day)	Generation (m3/day)	Generation (m3/day)							
Griz Inn	1136	45	51.1	51.1	51.1	51.1	51.1	51.1	51.1	51.1	51.1	51.1	51.1	51.1
Wolf's Den	318	42	13.4	13.4	13.4	13.4	13.4	13.4	13.4	13.4	13.4	13.4	13.4	13.4
Cornerstone	1136	26	29.5	29.5	29.5	29.5	29.5	29.5	29.5	29.5	29.5	29.5	29.5	29.5
Timberline Condos	1022	58	59.3	59.3	59.3	59.3	59.3	59.3	59.3	59.3	59.3	59.3	59.3	59.3
Polar Peaks (4-Plex Units)	1136	24	27.3	27.3	27.3	27.3	27.3	27.3	27.3	27.3	27.3	27.3	27.3	27.3
Timberline Single Family & B&B	1363	51	69.5	69.5	69.5	69.5	69.5	69.5	69.5	69.5	69.5	69.5	69.5	69.5
	Subtotal	246	250.1	250.1	250.1	250.1	250.1	250.1	250.1	250.1	250.1	250.1	250.1	250.1
	oustotal	2.0	20011	20011	20011		20011	20011	20011	20011	20011	10011	20011	20011
r	Flow*		2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Infill Units			-	-										
	(l/unit/day)	Units	Generation (m3/day)	Generation (m3/day)	Generation (m3/day)	Generation (m3/day)	Generation (m3/day)							
Timberline Infills	1022	141	144.1	144.1	144.1	144.1	144.1	144.1	144.1	144.1	144.1	144.1	144.1	144.1
Timberline Single Family	1363	2	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
Timberline Infills	1022	106	108.3	108.3	108.3	108.3	108.3	108.3	108.3	108.3	108.3	108.3	108.3	108.3
Timberlanding Multifamily	1022	45	60.0	60.0	60.0	60.0	60.0	60.0	60.0	46.0	46.0	46.0	46.0	46.0
Timberlanding Single Family ¹⁾	1363	59.5	44.3	44.3	44.3	44.3	44.3	44.3	44.3	81.1	81.1	81.1	81.1	81.1
Highline Infill	1022	26	26.6	26.6	26.6	26.6	26.6	26.6	26.6	26.6	26.6	26.6	26.6	26.6
	Subtotal	379.5	386.0	386.0	386.0	386.0	386.0	386.0	386.0	408.8	408.8	408.8	408.8	408.8
1	Flow*		2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Highline Subdivision			-	-		-								
-	(l/unit/day)	Units	Generation (m3/day)	Generation (m3/day)	Generation (m3/day)	Generation (m3/day)	Generation (m3/day)							
Single Family	1363	54	66.8	66.8	66.8	66.8	66.8	66.8	66.8	66.8	73.6	73.6	73.6	73.6
Duplexes	1363	10	13.6	13.6	13.6	13.6	13.6	13.6	13.6	13.6	13.6	13.6	13.6	13.6
Parcel 31-Condotel	318	61	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.4
Parcel 32-Duplex	1363	16	21.8	21.8	21.8	21.8	21.8	21.8	21.8	21.8	21.8	21.8	21.8	21.8
Parcel 36-Hotel	318	101	32.1	32.1	32.1	32.1	32.1	32.1	32.1	32.1	32.1	32.1	32.1	32.1
Parcel 37-Townhouses	1363	8	10.9	10.9	10.9	10.9	10.9	10.9	10.9	10.9	10.9	10.9	10.9	10.9
Parcel 38-Townhouses	1363	23	31.3	31.3	31.3	31.3	31.3	31.3	31.3	31.3	31.3	31.3	31.3	31.3
Parcel 3-Condominium	1363	12	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4
Parcel 8-Condominium	1363	42	57.2	57.2	57.2	57.2	57.2	57.2	57.2	57.2	57.2	57.2	57.2	57.2
	Subtotal	327	269.5	269.5	269.5	269.5	269.5	269.5	269.5	269.5	276.4	276.4	276.4	276.4
											•			
	Flow*	Population	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Day Users				Generation (m3/day)			Generation (m3/day)	Generation (m3/day)	Generation (m3/day)	Generation (m3/day)	Generation (m3/day)		Generation (m3/day)	-
01	(l/unit/day)	(each)		<u> </u>	Generation (m3/day)							Generation (m3/day)		Generation (m3/day)
Skiers	36	700	252	252	252		252	252	252	252	252	252	252	252
	Subtotal	700	252	252	252	252	252	252	252	252	252	252	252	252
Dining Facilitas/Dage	Flow*	Area	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2023
Dining Facilites/Bars	(I/m²/day)	(m2)	Generation (m3/day)	Generation (m3/day)	Generation (m3/day)	Generation (m3/day)	Generation (m3/day)							
Lizard Creek - Dining	97	54.7	5.3	. ,	5.3	. ,	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3
Lizard Creek - Bar	145				5.9				5.9					5.9
				50										
		40.4	5.9	5.9		5.9	5.9	5.9	010	5.9	5.9	5.9	5.9	
Kelseys - Dining	97	204.4	19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8
Kelseys - Dining Kelseys - Bar	97 145	204.4 65	19.8 9.4	19.8 9.4	19.8 9.4	19.8 9.4	19.8 9.4							
Kelseys - Dining Kelseys - Bar Daylodge - Dining	97 145 97	204.4 65 358.6	19.8 9.4 34.8	19.8 9.4 34.8	19.8 9.4 34.8	19.8 9.4 34.8	19.8 9.4 34.8							
Kelseys - Dining Kelseys - Bar Daylodge - Dining Daylodge - Bar	97 145 97 145	204.4 65 358.6 260.7	19.8 9.4 34.8 37.8	19.8 9.4 34.8 37.8	19.8 9.4 34.8 37.8	19.8 9.4 34.8 37.8	19.8 9.4 34.8 37.8							
Kelseys - Dining Kelseys - Bar Daylodge - Dining Daylodge - Bar Mean Bean	97 145 97 145 97	204.4 65 358.6 260.7 26.8	19.8 9.4 34.8 37.8 2.6	19.8 9.4 34.8 37.8 2.6	19.8 9.4 34.8 37.8 2.6	19.8 9.4 34.8 37.8 2.6	19.8 9.4 34.8 37.8 2.6							
Kelseys - Dining Kelseys - Bar Daylodge - Dining Daylodge - Bar Mean Bean Gabrielles	97 145 97 145 97 97	204.4 65 358.6 260.7 26.8 133.8	19.8 9.4 34.8 37.8 2.6 13	19.8 9.4 34.8 37.8 2.6 13.0	19.8 9.4 34.8 37.8 2.6 13.0	19.8 9.4 34.8 37.8 2.6 13.0	19.8 9.4 34.8 37.8 2.6 13.0	19.8 9.4 34.8 37.8 2.6 13.0						
Kelseys - Dining Kelseys - Bar Daylodge - Dining Daylodge - Bar Mean Bean Gabrielles Powder House Inn	97 145 97 145 97 97 97	204.4 65 358.6 260.7 26.8 133.8 232.2	19.8 9.4 34.8 37.8 2.6 13 22.5	19.8 9.4 34.8 37.8 2.6 13.0 22.5	19.8 9.4 34.8 37.8 2.6 13.0 22.5	19.8 9.4 34.8 37.8 2.6 13.0 22.5	19.8 9.4 34.8 37.8 2.6 13.0 22.5	19.8 9.4 34.8 37.8 2.6 13.0 22.5						
Kelseys - Dining Kelseys - Bar Daylodge - Dining Daylodge - Bar Mean Bean Gabrielles	97 145 97 145 97 97 97 97	204.4 65 358.6 260.7 26.8 133.8 232.2 62.4	19.8 9.4 34.8 37.8 2.6 13 22.5 6.1	19.8 9.4 34.8 37.8 2.6 13.0 22.5 6.1	19.8 9.4 34.8 37.8 2.6 13.0 22.5 6.1	19.8 9.4 34.8 37.8 2.6 13.0 22.5 6.1	19.8 9.4 34.8 37.8 2.6 13.0 22.5 6.1	19.8 9.4 34.8 37.8 2.6 13.0 22.5 6.1						
Kelseys - Dining Kelseys - Bar Daylodge - Dining Daylodge - Bar Mean Bean Gabrielles Powder House Inn	97 145 97 145 97 97 97 97	204.4 65 358.6 260.7 26.8 133.8 232.2	19.8 9.4 34.8 37.8 2.6 13 22.5	19.8 9.4 34.8 37.8 2.6 13 22.5	19.8 9.4 34.8 37.8 2.6 13 22.5	19.8 9.4 34.8 37.8 2.6 13 22.5 6.1	19.8 9.4 34.8 37.8 2.6 13 22.5	19.8 9.4 34.8 37.8 2.6 13 22.5	19.8 9.4 34.8 37.8 2.6 13 22.5	19.8 9.4 34.8 37.8 2.6 13.0 22.5	19.8 9.4 34.8 37.8 2.6 13.0 22.5	19.8 9.4 34.8 37.8 2.6 13.0 22.5	19.8 9.4 34.8 37.8 2.6 13.0 22.5	19.8 9.4 34.8 37.8 2.6 13.0 22.5
Kelseys - Dining Kelseys - Bar Daylodge - Dining Daylodge - Bar Mean Bean Gabrielles Powder House Inn	97 145 97 145 97 97 97 97	204.4 65 358.6 260.7 26.8 133.8 232.2 62.4	19.8 9.4 34.8 37.8 2.6 13 22.5 6.1	19.8 9.4 34.8 37.8 2.6 13.0 22.5 6.1	19.8 9.4 34.8 37.8 2.6 13.0 22.5 6.1	19.8 9.4 34.8 37.8 2.6 13.0 22.5 6.1	19.8 9.4 34.8 37.8 2.6 13.0 22.5 6.1	19.8 9.4 34.8 37.8 2.6 13.0 22.5 6.1						
Kelseys - Dining Kelseys - Bar Daylodge - Dining Daylodge - Bar Mean Bean Gabrielles Powder House Inn Bears Den	97 145 97 145 97 97 97 97 97 Subtotal	204.4 65 358.6 260.7 26.8 133.8 232.2 62.4	19.8 9.4 34.8 37.8 2.6 13 22.5 6.1 157.2	19.8 9.4 34.8 37.8 2.6 13.0 22.5 6.1 157.2	19.8 9.4 34.8 37.8 2.6 13.0 22.5 6.1 157.2	19.8 9.4 34.8 37.8 2.6 13.0 22.5 6.1 157.2	19.8 9.4 34.8 37.8 2.6 13.0 22.5 6.1 157.2	19.8 9.4 34.8 37.8 2.6 13.0 22.5 6.1 157.2						
Kelseys - Dining Kelseys - Bar Daylodge - Dining Daylodge - Bar Mean Bean Gabrielles Powder House Inn	97 145 97 145 97 97 97 97 97 97 97 97 97	204.4 65 358.6 260.7 26.8 133.8 232.2 62.4	19.8 9.4 34.8 37.8 2.6 13 22.5 6.1	19.8 9.4 34.8 37.8 2.6 13.0 22.5 6.1	19.8 9.4 34.8 37.8 2.6 13.0 22.5 6.1	19.8 9.4 34.8 37.8 2.6 13.0 22.5 6.1	19.8 9.4 34.8 37.8 2.6 13.0 22.5 6.1	19.8 9.4 34.8 37.8 2.6 13.0 22.5 6.1						

*Estimated Wastewater flows from BC Health Act, Sewage Disposal Regulation

**Based on 2005 flow for peak day flows

Note that the number loss not reflect a true peak as all the data were not available during high flow months
 1) 27 units added for Phase 1 Timberlanding in 2018

														t for Fe	ernie Al	pine R	esort U	tilities	Corp.										
										Chlo	rine Res	sidual (n	ng/L)										10/		(3)	Turbidit		Independent Testing	
Day	Reser	rvoir 1	Reser	voir 2	New R	eservoir	River I	Pump	WW	/TP	Sh	ор	Tama	arack	Lift St	ation	Lizard	Creek	Snow	Creek	Pan	itry	wate	er Usage	(m ⁻)	ruibiun	y (iti 0)	independent reating	
	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	Springs	River Pp	Total	Spring	River	T. Coliform E. Coli	
1	1.28		0.65				0.59	6:45	0.23	10:45	0.27	11:00			0.35	14:15					0.49	13:45	83		617		0.192		
2	1.08	14:30	0.51	14:30			0.34	9:00	0.21	11:15			0.29	11:45	0.45	11:30							72		589		0.231		
3	1.16	14:30	0.63				0.28	9:00	0.38	11:45					0.49	12:45	0.7	12:30					76		589		0.242		
4	1.13	13:00	0.63				0.70	6:30	0.44	7:15	0.29	11:30			0.43	14:30			0.33	14:45			77		591		0.268		
5	1.31		0.89				0.26	6:30	0.43				0.42	13:15	0.47	9:15					0.52	13:45	74		697		0.274	<1/<1 <1/<1 WV	VTP, Maintenance
6	1.16	13:00	0.97	13:00			0.44	7:15	0.17	15:45					0.52	12:45	0.68	12:30					74		523		0.147		
7	1.12	14:30	0.81				0.30	9:30	0.37	10:45					0.71	11:00			0.62	11:15			75	348	423		0.149		
8	1.16	15:45	0.69				0.40	8:45	0.15	17:00	0.09	11:00			0.19	16:30					0.58	16:15	71		549		0.134		
9	0.98	13:00	0.77				0.61	8:45	1.17	8:30			0.47	11:00	0.64	10:30							68		521		0.139		
10	1.45	12:15	0.59	12:15			0.21	10:00	0.31	13:45					0.71	13:30	0.49	14:00					64	364	428		0.146		
11	0.85 13:00 0.94 13:00 0.31 8:45 0.71 15:00 0.31 11:30 0.22 14:30 0.62 12:00 72 338 410 0.084 0.147 <1/< 1 <1/< 1 Participation 1.4 16:00 0.91 16:00 0.66 6:30 0.76 8:30 0.81 9:15 0.83 9:00 68 521 589 0.084 0.141															ntry, Lizard													
12													0.81	9:15									68						
13	1.06	13:00	1.15				0.41	13:30	0.85	10:00					0.97	8:30	1.44	10:15					116	408	524		0.323		
14	0.72		0.74				0.30	6:00	0.76	10:00					0.90	15:30			0.92	15:15			13	191	204		0.426		
15	0.45		0.75				0.41	9:00	0.80	14:00	0.48	11:00			0.91	17:45					0.82	11:30	205	354			0.211		
16	0.66	13:15	0.87	13:15			0.27	9:00	1.09	10:45			0.71	9:00	1.14	9:30							147	365	512		0.213		
17	1.12	13:30	0.76				0.26	10:00	0.86	10:15					1.21	9:30							136	243	379		0.201		
18	0.95	13:30	0.62	13:30			0.20	7:00	1.05	16:45	0.65	15:00			1.15	8:30			0.71	13:00			120	350	470		0.145		
19	0.91		0.77				0.04	7:00	0.38	16:30			0.95	9:15	1.08	9:45					1.39	9:45	108	621	729		0.3	<1/<1 <1/<1 Tan	narak, Snow Creek
20	1.38		0.98	13:45			0.26	7:00	0.60	9:00					0.78	8:30	0.64	8:30					104	32	136		0.348		
21	1.51	14:30	0.91	14:30			0.11	9:00	1.02	10:45					1.52	11:00			0.82	11:15			97	434	531		0.171		
22	1.28	16:30	1.08	16:30			0.20	9:00	0.94	9:15	0.48	13:00			0.99	16:15					0.62	13:15	98	352	450		0.197		
23	1.18	13:45	0.93				0.23	9:00	0.62	10:00			1.06	10:30	1.63	10:00							84	416	500		0.206		
24	1.1	14:00	1.14				0.10	9:00	0.85	11:00					1.55	10:45		11:00					103	131	234		0.151		
25	1.12	13:45	1.14	13:45			0.09	7:30	0.16	10:45	0.65	10:30			0.20	8:45			0.01	14:30			100	344	444	0.1	0.073		
26	1.06	13:45	1.19	13:45			0.44	7:30	0.45	10:30			1.03	8:45	1.60	8:30					1.51	8:45	90	512	602		0.205	<1/<1 <1/<1 WW	VTP, Maintenance
27	0.66	13:45	1.06	13:45			0.47	9:00	1.55	10:30					1.59	9:30	0.9	9:30					80	345	425		0.203		
28		14:00	1.08	14:00			0.47	11:00	1.51	10:45					1.70	11:45			1.01	14:00			79	381	460	0.1	0.23		
29	1.29	16:00	0.91				0.04	5:15	1.23	6:45	0.67	12:15			1.13	12:30					0.75	12:30	82		310	0.097	0.077		
30	0.9	14:00	1.59	14:00			0.21	8:30	0.70	15:30			0.12	10:00	0.07	10:15							66	368	434	0.095	0.777		
31	0.11	14:00	0.89	14:00			0.35	9:00	0.80	10:00					1.41	9:15	1.26	9:30					70	485	555	0.098	0.186		
Average	1.05		0.89		#DIV/0!		0.32		0.70		0.43		0.65		0.89		0.88		0.63		0.84		89.42	393.94	483.35	0.30	111.00		
Median	1.12		0.89		#NUM!		0.3		0.71		0.48		0.71		0.9		0.795		0.665		0.685		80	381	512	0.102	0.201		
Total	31.54		27.55		0		9.96		21.55		3.89		5.86		27.54		7		5.04		6.68		2772	12212	14984	9.345	6.853	>1 >1	
									~ .																				

January 2021 Water Report for Fernie Alpine Resort Utilities Corp

NOTE: For Independent Testing Column, if 'normal' must input < 1 / < 1 exactly in order for formula to work (spaces between everything)

Comments: The reservoir #2 and New reservoir continue to act as the end point in the system so residuals may be lower than 0.5mg/L. All items within the reporting period met interior healths current requirements for our water system.

During the reporting period the water system was in compliance with permit requirements.

ī							sidual (m			ernie Alpine F										_			
у	Reservoir 1	Reservoir 2	New Reservoir	River Pump	WWTP		юр	Tama	arack	Lift Station	Lizaro	Creek	Snow	Creek	Pan	try	Wate	r Usage	• (m³)	Turbidit	y (NTU)	Independent Testing	
	CL ₂ Time	CL ₂ Time	CL ₂ Time	CL ₂ Time	CL ₂ Time	CL ₂	Time	CL ₂	Time	CL ₂ Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	Springs	River Pp	Total	Spring	River	T. Coliform E. Coli	
	0.36 15:30	0.92 15:30	0.53 15:30	0.31 8:30	0.57 9:45	15:21	10:15	_		0.00 9:00	0.82	11:00	1.05	10:30	0.14	10:45	72	457	529	0.108	0.078	<1/<1 <1/<1	Lizard Creek, Pantry & raw riv
ľ	0.73 12:00	1.42 12:00	0.71 12:15	0.3 7:00	0.12 9:15			0.22	9:30	0.00 9:00					0.81	14:45	54	529		0.105	0.16		
ſ	1 14:00	0.89 14:00	0.46 14:00	0.2 8:00	0.09 9:15					1.41 8:15	0.66	8:30					82	390	472	0.108	0.23		
	1.4 15:30	0.79 15:30	0.46 11:45	0.31 9:00	0.84 11:30					0.90 14:00			0.82	11:15			76	268	344	0.1	0.203		
ſ	1.04 15:00	0.89 15:00	0.62 12:00	0.25 9:00	0.68 11:00	0.67	12:15			1.61 11:30					1.2	11:45	65	276	341	0.099	0.196		
	0.74 13:45	0.72 13:45	0.59 13:00	0.25 9:00	0.82 12:00			0.98	9:15	1.64 9:00							60	522	582	0.099	0.193		
	0.5 12:15	1.08 12:15	0.73 16:00	0.28 8:15	0.82 15:00					1.50 10:00	0.8	10:15					58	369		0.087	0.176		
	0.28 10:30	0.98 10:30	0.69 12:00	0.27 11:00	0.76 10:00				10:15	1.59 10:30			1.03	10:30			57	539	596	0.088			Tamarak, Snowcreek & raw riv
	0.37 13:45	0.99 13:45	0.58 14:30	0.55 9:00	0.21 12:30			0.02	9:30	0.63 9:00					0.59	9:45	68	316		0.086	0.126		
l	1.7 13:30	0.94 13:30	0.48 13:30	0.63 9:00	1.27 15:30	1.48	11:15			0.29 9:15	0.96	9:30					58	431	489	0.086	0.092		
ł	1.12 14:45	0.78 14:45	0.54 14:00	0.3 12:30	0.95 10:30					0.30 11:30			0.63	11:15			60	390	450	0.087	0.147		
ł	1.06 12:30	0.67 12:30	0.45 12:00	0.27 11:00	0.72 14:00	0.42	12:45			0.39 12:30					0.08	13:00	51	244	295	0.086	0.081		
ļ	1.34 15:00	0.57 15:00	0.37 11:00	0.44 10:00	0.60 12:00			0.59	9:00	0.37 9:15							63	407	470	0.089	0.086		
	1.67 12:45	0.58 12:45	0.33 13:00	0.36 8:00	0.72 15:45					0.52 10:30	0.44	10:15					49	477	526	0.093	0.178		
ļ	1.12 11:30	0.64 11:30	0.62 12:00	1.01 6:00	0.72 7:00			0.52	11:45	0.51 10:45							40	1245		0.088	0.063		
	1.06 9:45	0.62 9:45	0.59 11:15	0.13 8:00	0.81 11:15	0.19	11:30			0.57 9:00					0.7	15:00	49	585	634	0.087			WWTP, Maintenance & raw ri
	1.34 9:30	1.32 9:30	0.1 10:30	0.13 10:45	0.32 11:00					0.50 8:45	0.5	9:00					51	732		0.088	0.294		
	1.67 14:15	0.65 14:15	0.38 11:00	0.25 11:30	0.45 11:00					0.00 11:45			0.35	12:00			59	620	679	0.088	0.061		
ļ	0.97 13:00	0.43 13:00	0.35 12:15	0.11 12:00	0.45 10:30	0.15	12:30			0.44 13:30					0.31	13:45	46	439	485	0.087	0.431		
	1.08 12:15	0.62 12:15	0.49 12:00	0.26 11:30	0.46 15:00			0.6	8:30	0.56 9:00							46	571	617	0.087	0.002		
	1.02 10:00	0.73 10:00	0.46 16:45	0.34 11:30	0.37 15:00					0.01 11:00		12:00	0.52	12:15			44	456		0.087	2.381		
ŀ	0.75 12:00	0.57 12:00	0.52 11:45	0.11 10:00	0.22 11:30					0.00 18:00	0.12	14:00			0.08		49	601	650	0.096			Lizard Creek, Pantry & raw riv
ŀ		0.71 9:45	0.47 13:45	0.13 9:00	0.49 14:00	0.00	0.45	0.57	13:15			40.00			0.1	13:15	44	493	537	0.096	0.076		
	0.45 15:00	0.38 15:00	0.32 9:30 0.3 15:00	0.14 10:15 0.33 9:00	0.56 8:15 0.24 14:00	0.32	9:15			0.50 9:45	0.9	10:00					57 38	523	580	0.089	0.065		
ł	0.76 11:00 0.99 13:45	0.91 11:00	0.3 15:00	0.33 9:00	0.24 14:00	0.42	13:15			0.45 9:00					0.42	42.20	38 48	459 615	497 663	0.088	0.112		
ł	1.51 12:25	0.54 13:45	0.5 13:30	0.62 12:50	0.35 9:30	0.43	13:15	0.4	9:00	0.50 14:45					0.42	13:30	48	528	568	0.088	0.525		
ŀ	1.58 13:30	0.53 12.25	0.27 14.30 too low	0.35 7:15	0.12 14.45			0.1	5.00	0.50 8.45	0.15	11:00	0.38	11.20			40	37	200	0.09	0.078		
ł	1.00 13:30	0.04 13:30	IOU IOW	0.30 7:15	0.10 15.45					0.44 10.30	0.15	11.00	0.36	11.30			44	37	01	0.069	0.078		
ł									_										0				
ł																			0				
е	1.00	0.76	0.48	0.31	0.53	0.54		0.53		0.59	0.58		0.68		0.44		54.57	482.82	485.39	0.09	0.23		
1	1.03	0.715	0.48	0.275	0.525	0.425		0.57		0.5	0.58		0.63		0.365		52.5	468	500		0.138		
	27.98	21.41	12.91	8.74	14.91	4.3		4.73		16.62	5.76		4.78		4.43		1528	13519	15047	2,569	6.577	>1 >1	

Comments: The reservoir #2 and New Reservoir continue to act as the end point in the system so residuals may be lower than 0.5mg/L.

					Marc	ch 2021	Water	Report for Fe	ernie Alpine	Resc	ort Utiliti	es Corp.									_
					Chlo	orine Re	sidual (n	ng/L)								Mater Heren	(3)	Turbidit		Independent Testing	
Day	Reservoir 1	Reservoir 2	New Reservoir	River Pump	WWTP	Sh	ор	Tamarack	Lift Station	۱	Lizard Cre	ek Sno	ow Creek	Par	ntry	Water Usage	(m)	Turbiun	y (NTO)	independent resting	
	CL ₂ Time	CL ₂ Time	CL ₂ Time	CL ₂ Time	CL ₂ Time	CL ₂	Time	CL ₂ Time	CL ₂ Tir	ne	CL ₂ Ti	ne CL	2 Time	CL ₂	Time	Springs River Pp	Total	Spring	River	T. Coliforn E. Coli	
1	1.75 12:45	0.59 12:45	0.32 13:00		0.18 10:30			0.15 11:15	0.33 10:00)		0.	.21 11:00			41	41	0.089	0.11	<1/<1 <1/<1	Tamarak, Snowcreek Lodge
2	1.5 15:00	0.61 15:00	0.27 10:15	0.43 8:00	0.34 14:15				0.38 8:15					0.57	10:00	44 1303		0.087	0.112		
3	1.24 12:50	0.66 12:50	0.35 8:30	0.31 8:00	0.30 9:30	0.37	8:30		0.36 8:00		0.61 8:15					37 518		0.087	0.189		
4	0.52 15:45	0.52 15:45	0.32 15:30	0.42 8:00	0.09 10:00				0.10 10:00			(0.3 10:15			45 449		0.087	0.377		
5	0.71 12:15	0.48 12:15	0.4 12:00	0.28 8:45	0.12 10:40	0.14	11:45		0.35 11:15					0.2	11:30	37 613		0.088	0.292		1
6	1.06 13:45	0.51 13:45	0.41 13:30	0.39 9:15	0.30 13:00			0.34 12:45	0.42 10:45							51 682		0.118	0.116		
7	1.22 13:00	0.51 13:00	0.43 12:45	0.19 8:00	0.36 10:00				0.36 11:00		0.42 10:4	5 0.	.38 10:30			53 738		0.120	0.084		
8	1 13:00	lo water 13:00	0.31 7:30	0.19 7:00	0.34 10:30	0.32	10:45		0.39 10:00)						59 195		0.109		<1/<1 <1/<1	Wastewater, Maintenance
9	1.08 13:00	0.57 13:00	0.12 13:30	0.20 6:30	0.56 8:30			0.55 8:45	0.48 8:30					0.43	9:00	68 810		0.100	0.117		
10	1.16 11:30	0.6 11:30	0.38 11:45	0.47 8:45	0.50 15:30	0.49	10:15		0.31 10:00		0.49 10:1					50 580		0.095	1.909		
11	1.2 10:15	lo water 10:15	0.44 10:00	0.23 9:00	0.32 16:15				0.42 16:00			0.	.35 15:45			43		0.091	1.047		
12	1.62 13:15	0.62 13:15	0.14 13:15	0.27 7:00	0.30 12:00	0.33	9:45		0.38 10:00)				0.4	10:15	53 548		0.088	0.081		
13	1.6 12:40	0.74 12:40	0.15 13:00	0.31 9:00	0.22 15:15			0.48 8:30	0.38 8:45							46 1027		0.087	0.075		
14	1.06 14:00	0.77 14:00	0.14 13:00	0.33 9:00	0.22 15:00				0.45 10:30)	0.11 10:1		.26 9:30			50 634		0.087	0.083		
15	1.37 14:30	0.68 14:30	0.15 15:30	0.16 8:00	0.13 8:45				0.39 9:30		0.22 11:1	5			11:30	60 551		0.099		<1/<1 <1/<1	Pantry, Lizard Creek Lodge
16	0.46 15:30	0.68 15:30	0.36 10:00	0.26 9:00	0.79 12:00			0.94 11:15	0.71 11:15					1.14	9:15	83 475		0.171	0.09		
17	0.27 15:00	0.21 15:00	0.28 14:45	0.31 9:00	0.19 16:30	0.29	14:30		0.64 12:30		0.24 12:4					99 629		0.144	0.079		
18	0.5 16:30	0.52 16:30	0.3 13:30	0.28 9:00	0.29 16:00				0.33 13:00			(0.4 13:15			120 411		0.130	0.07		
19	0.63 13:00	0.37 13:00	0.28 12:45	0.34 14:30	0.32 11:00	0.21	12:30		0.32 12:30					0.22	12:15	106 418		0.344	0.03		
20	0.72 13:45	0.66 13:45	0.19 16:00	0.33 9:00	0.32 16:15			0.39 11:00	0.41 10:45							192		0.440	0.089		
21	0.64 11:00	0.71 11:00	0.27 15:15	0.35 8:00	0.37 8:30				0.41 14:00)	0.48 14:4		.73 15:00	0.54	10.18	172 451		0.275	0.1		
22	0.61 9:45	0.31 9:45	0.19 16:00	0.37 7:00	0.32 12:00				0.47 8:45	_	0.32 10:3)		0.51	10:45	160 477		0.194		<1/<1 <1/<1	Pantry, Lizard Creek Lodge
23 24	0.88 9:30	0.71 9:30 0.62 15:30	0.31 16:00	0.33 8:00 0.43 8:00	0.54 14:15 0.42 13:00	0.00	13:00	0.31 8:30	0.51 8:30		1.13 14:4					132 539 149 331		0.137	0.095		
	0.94 15:30	0.62 15:30	0.2 16:30	0.43 8:00	0.42 13:00	0.23	13:00		0.50 14:00		1.13 14:4		.72 14:00			149 331		0.137	0.044		
25	1.07 13:15	0.61 14:30	0.98 15:00	0.35 8:00	0.30 11:00	0.00	12:45		0.54 17:30			0.	.72 14:00	0.40	13:45	96 539		0.112	0.063		
26 27	1.29 14:30	0.93 14:30	0.9 13:00	0.70 9:30	0.34 11:30	0.32	12.45	0.74 10:15	0.54 12:4				_	0.42	13.45	101 462		0.102	0.067		4
27	1.13 14:30	0.93 14:30	0.43 15:00	0.55 9:00	0.37 13:00			0.74 10:15	0.46 11:00		0.42 11:1		42 11:30			101 462		0.111	0.063		
20	0.7 12:30	0.8 12:30	0.25 13.00	0.29 9:00	0.42 12:00			0.72 11:15	0.47 16:30		0.42 11.1		0.8 11:00		_	164 540		1.166		-1/-1 -1/-1	Tamarak, Snowcreek Lodge
30	0.33 10:00	0.51 10:00	0.18 16:15	0.29 9.00	0.38 17:00			0.72 11.15	0.59 11:30			- · · ·	0.0 11.00	0.15	11:45	178 401		0.436	0.069	\$1/\$1 \$1/\$1	amarak, Showcreek Louge
30	0.89 13:15	0.78 13:15	0.18 16.15	0.28 10:00	0.51 10:00	0.6	10:30		0.42 10:15		0.58 10:3	1		0.15	11.45	181 531		0.436	0.067		4
Average	0.97	0.62	0.31	0.34	0.34	0.33	10.00	0.51	0.42 10.1		0.38 10.3		.46	0.42	-	92.90 579.79	616.58		0.039		2
Median	0.57	0.62	0.28	0.32	0.32	0.33		0.48	0.43		0.46		.40	0.42		83 539.5	630		0.19		4
Total	30.12	17.9	9.76	10.13	10.65	0.32		4.62	13.43		5.02		.59	4.16	_	2880 16234	19114	5.742	5.97	>1 >1	-
Total	00.12		3.70	10.13		3.3		7.04	13.43		0.02	4.		4.10		2000 10234	13114	J.742	5.57		_

March 2021 Water Report for Fernie Alpine Resort Utilities Corp

NOTE: For Independent Testing Column, if 'normal' must input < 1 / < 1 exactly in order for formula to work (spaces between everything)

Comments:

All items within the reporting period met interior healths current requirements for our water system.

The reservoir #2 and new reservoir continue to act as the end point in the system so residuals may be lower than 0.5mg/L.

the end point in the system so residuals may be lower than 0.5mg/L.

					Apri	I 2021	Water I	Report f	for Fer	nie Alp	oine Res	sort Utiliti	es Cor	rp.								_
					Chlo	rine Re	sidual (n	ng/L)									Mater Here	- (3)	Turbidi	tv (NTU)	Independent Testing	
Day	Reservoir 1	Reservoir 2	New Reservoir	River Pump	WWTP	Sh	ор	Tama	arack	Lift S	station	Lizard Cre	eek	Snow Cre	eek	Pantry	Water Usag	e (m ⁻)	Turbiu	ly (NTO)	independent resting	4
	CL ₂ Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂ T	ime		Time	CL ₂ Tim	 Springs River Pl 			River	T. Coliform E. Coli					
1	0.55 13:45	0.55 13:45	0.21 14:00	0.19 9:00	0.48 10:30						13:15			0.62 13:	:00		142 473		0.160	0.061		1
2	0.73 13:45	0.69 13:45	0.28 14:00	0.45 9:00	0.32 11:00	0.58	13:45				13:30					0.22 14:15	133 548		0.223	0.059		4
3	0.28 13:45	0.49 13:45	0.13 14:45	0.28 7:00	0.41 15:00			0.81	8:30		8:30						206 145		0.641	0.067		4
4	0 11:00	0.22 11:00	0.18 14:00	0.35 7:00	0.39 8:15						8:15	0.41 8:30	0	0.26 16:	:30		314 550		0.913	0.740		4
5	0.21 15:00	0.32 15:00	0.2 14:00	0.27 7:00	0.45 10:00	0.41	10:30				8:45						0 449		0.393		<1/<1 <1/<1	Wastewater, Maintenance
6	0.18 14:00	0.28 14:00	0.2 15:45	0.21 10:15	0.34 16:15			0.22	9:15		11:45					0.14 10:30	230 595		0.407	0.096		4
7	0.06 12:00	0.19 12:00	0.32 8:30	0.31 7:00	0.25 12:00	0.35	8:30				8:45	0.3 8:45	5				315 303		0.400	0.189		4
8	0.1 10:30	0.22 10:30	0.29 11:00	0.16 9:00	0.10 15:00						11:15			0.24 12:	:00		324 0		0.604	0.256		4
9	0.06 16:00	0.33 16:00	0.42 16:30	0.5 12:00	0.26 16:45	0.44	16:00				17:15					0.42 17:30	412 0		0.339	0.746		4
10	0.03 12:00	1.04 12:00	0.41 14:00	0.52 9:00	0.33 16:00			0.65	8:30		8:45						230 245		0.271	0.509		4
11	0.06 14:45	1 14:45	0.39 13:00	0.45 13:00	0.37 16:30						11:15	0.97 12:0	00	0.95 11:			278 225		0.187	0.159		4
12	0 13:00	0.64 13:00	0.45 14:00	0.48 10:45	0.54 10:00						11:00			0.86 11:	:15		210 352		0.160		<1/<1 <1/<1	Pantry, Lizard Creek Lodge
13	1.08 11:30	0.8 11:30	0.31 10:00	0.31 10:15	0.69 9:15			0.62	9:30		9:30					0.75 9:45	180 188		0.150	0.163		
14	0.67 13:00	0.81 13:00	0.27 12:30	0.28 10:30	0.52 12:00	0.42	12:30				8:45	0.71 9:00	0				202 143		0.147	0.132		4
15	0.15 16:30	0.49 16:30	0.25 16:45	0.34 11:45	0.51 11:30						12:00			0.7 12:	:15		245 249		0.406	0.135		4
16	0.04 14:30	0.2 14:30	0.3 15:15	0.28 9:15	0.38 16:00	0.42	13:30				15:30					0.45 15:00	257 153		0.288	0.140		4
17	1.91 10:45	0.82 10:45	0.27 14:00	0.46 11:15	0.34 14:30			0.5	9:30		9:30						280 412		0.381	0.145		4
18	0.85 9:30	0.98 9:30	0.24 13:15	0.31 13:00	0.42 9:00						10:15	0.94 10:1	15				363 0		0.833	0.140		4
19	0.67 11:00	0.84 11:00	0.26 16:30	0.31 8:30	0.46 11:30			0.45	11:00		16:15			0.53 11:	:15		0 0		0.368	0.150	<1/<1 <1/<1	Tamarak, Snowcreek Lodge
20	0.9 10:15	1.01 10:15	0.23 9:00	0.48 10:30	0.50 15:00						9:45					0.42 10:30	336 506		0.277	0.153		
21	1.03 11:15	0.9 11:15	0.3 11:30	0.34 17:00	0.60 16:00	0.46	12:00				11:00	0.55 11:4	45				350 0		0.253	0.143		
22	0.9 10:45	0.93 10:45	0.41 10:45	0.35 10:15	0.43 15:00						10:30			0.43 11:	:00		364 0		0.308	0.149		4
23	0.72 10:15	0.64 10:15	0.26 8:15	0.29 9:30	0.51 11:00	0.5	8:30				9:45					0.66 9:15	347 323		0.230	0.141		
24	0.99 14:00	0.64 14:00	0.19 10:00	0.34 11:00	0.62 9:30			0.66	10:15		10:15						374 0		0.201	0.142		1
25	0.82 13:00	0.68 13:00	0.27 11:30	0.35 12:00	0.54 11:00						11:30	0.41 11:4	45				280 0		0.164	0.147		4
26	0.48 12:30	0.7 12:30	0.19 9:30	0.28 9:45	0.54 8:30	0.34	9:30				9:15			0.59 11:	:00		270 0		0.198	0.141		4
27	1.12 11:30	0.78 11:30	0.27 10:00	0.4 12:15	0.39 15:00			0.59	11:15		12:00					0.72 9:45	285 269		0.267	0.146		4
28	1.15 14:00	1 14:00	0.55 15:00	0.43 10:30	0.49 10:30	0.52	10:45				11:00	0.7 11:1	15				352 207		0.336	0.140	<1/<1 <1/<1	Wastewater, Maintenance
29	0.84 14:00	0.96 14:00	0.41 13:00	0.36 16:00	0.48 11:30						13:30			0.54 12:	:00		375 0		0.435	0.144		1
30	0.66 11:45	0.78 11:45	0.38 13:00	0.28 18:00	0.47 15:00	0.7	12:30			0.95	11:30					0.52 12:15	356 0	356	0.408	0.135		4
31																						4
Average	0.57	0.66		0.35	0.44	0.47		0.56		0.55		0.62		0.57		0.48	267.00 211.17					4
Median	0.665	0.695		0.34	0.455	0.44		0.605		0.565		0.625		0.565		0.45	280 197.5					4
Total	17.24	19.93		10.36	13.13	5.14		4.5		16.61		4.99		5.72		4.3	8010 6335	5 14345	10.348	5.698	>1 >1	4

April 2021 Water Report for Fernie Alpine Resort Utilities Corp.

NOTE: For Independent Testing Column, if 'normal' must input < 1 / < 1 exactly in order for formula to work (spaces between everything)

Comments:

The reservoir #2 continues to act as the end point in the system so residuals may be lower than 0.5mg/L.

-					May	y 2021 Water H	Report for Ferr	nie Alpine Res	sort Utilities C	orp.				
				-		orine Residual (n		-	-	-		Water Usage (m ³)	Turbidity (NTU)	Independent Testing
Day	Reservoir 1	Reservoir 2	New Reservoir	River Pump	WWTP	Shop	Tamarack	Lift Station	Lizard Creek	Snow Creek	Pantry			
	CL ₂ Time	Springs River Pp Total	Spring River	T. Coliforn E. Coli										
1	0.65 10:15	0.64 10:15	0.3 13:00	0.28 12:00	0.37 13:30		0.4 9:30	0.82 9:30					0.541 0.14	
2	0.64 9:15	0.64 9:15	0.29 13:30	0.28 10:15	0.58 14:45	0.7 12:30		0.67 9:30	0.58 9:15	0.45 9:45			0.33 0.144	
3	0.7 10:00	0.62 10:00	0.28 8:30	0.5 9:15	0.35 8:15	0.38 8:45		0.59 9:00					0.245 0.094	
4	0.62 9:45	0.59 9:45	0.28 15:15	0.15 10:30	0.41 11:00		0.57 10:00	0.56 10:30			0.56 9:30		0.222 0.146	
5	0.57 12:30	0.56 12:30	0.29 11:15	0.09 10:30	0.48 13:45	0.44 11:15		0.56 11:00	0.59 11:00		0.29 11:15			< 1 / < 1 < 1 / < 1 Lizard Creek, Pantry
6	0.8 11:15	0.67 11:15	0.33 8:30	0.1 8:45	0.53 8:30			0.59 9:30		0.42 11:00			0.196 0.125	
7	0.82 10:30	0.65 10:30	0.31 13:30	0.09 14:00	0.48 13:15	0.52 11:45		0.61 11:30			0.37 13:00		0.212 0.124	
8	0.6 12:00	0.68 12:00	0.32 12:15	0.3 16:00	0.64 17:00		0.7 12:30	0.43 13:00					0.129	
9	0.68 9:00	0.74 9:00	0.23 9:30	0.26 13:00	0.49 8:45			0.61 10:00	0.62 9:45	0.57 9:45			0.174 0.137	
10	0.66 12:00	0.58 12:00	0.25 10:00	0.35 11:30	0.44 14:00	0.31 9:45		0.59 10:00					3 0.158 0.068	
11	0.78 10:15	0.61 10:15	0.29 15:45	0.31 16:00	0.54 9:30		0.62 10:00	0.40 10:00			0.58 10:00		0.148 0.142	
12	0.83 13:30	0.67 13:30	0.22 11:00	0.29 14:45	0.51 17:30		0.71 11:30	0.54 11:30		0.63 11:00				< 1 / < 1 < 1 / < 1 Tamarak, Snowcreek
13	0.75 9:45	0.67 9:45	0.15 10:15	0.28 9:15	0.37 15:00			0.58 10:30	0.65 10:30	0.24 10:30			0.141 0.152	
14	0.68 14:15	0.66 14:15	0.22 12:00	0.28 18:00	0.26 11:15	0.6 11:30		0.60 14:00			0.58 12:15		õ 0.144 0.145	
15	0.69 11:15	0.71 11:15	0.32 11:00	0.27 12:30	0.30 13:00		0.62 10:45	0.61 10:30					0.145 0.146	
16	0.69 10:15	0.65 10:15	0.37 10:00	0.27 13:00	0.63 14:45			0.59 9:15	0.54 9:45	0.44 9:45			0.149 0.132	
17	0.48 12:00	0.61 12:00	0.24 12:15	0.31 12:00	0.44 9:45	0.57 10:15		0.58 10:00					5 0.149 0.171	
18	0.72 13:00	0.62 13:00	0.22 10:15	0.1 18:00	0.52 10:00		0.6 13:15	0.57 10:30			0.48 13:30		0.151 0.168	
19	0.59 10:00	0.63 10:00	0.24 10:30	0.08 10:45	0.53 8:30	0.59 10:30		0.53 10:15					0.141 0.156	
20	0.76 15:30	0.58 15:30	0.22 15:45	0.11 11:00	0.46 16:00			0.58 14:00	0.32 14:30	0.24 14:45			0.133 0.172	
21	0.74 10:00	0.71 10:00	0.25 10:30	0.14 11:00	0.42 16:00	0.5 15:45		0.59 10:00			0.42 10:15		0.13 0.167	
22	0.71 14:30	0.67 14:30	0.22 14:15	0.1 15:00	0.32 16:00		0.48 14:30	0.62 14:00				526 526	0.129 0.167	
23	0.9 15:00	0.8 15:00	0.26 10:30	0.08 11:45	0.56 10:15			0.65 11:00	0.68 11:00	0.62 10:45			3 0.124 0.173	
24	0.78 10:30	0.8 10:30	0.27 13:00	0.08 11:00	0.28 9:45	0.54 13:00		0.69 10:00					0.169	
25	0.87 7:45	1.05 7:45	0.25 14:15	0.31 15:30	0.35 9:30		0.58 11:00	0.48 10:45			0.49 10:00		2 0.14 0.248	
26	0.97 12:45	1.02 12:45	0.21 13:30	0.28 14:00	0.38 10:00			0.70 10:30	0.38 10:30					< 1 / < 1 < 1 / < 1 Lizard Creek, Pantry
27	0.52 14:00	0.75 14:00	0.24 14:15	0.24 14:30	0.42 14:45			0.55 13:30	0.42 14:00	0.53 13:45			0.131 0.162	
28	0.56 7:30	0.73 7:30	0.22 7:45	0.2 10:45	0.50 14:00	0.38 8:00		0.67 14:30			0.42 13:00		0.314 0.174	
29	0.47 11:30	0.57 11:30	0.3 12:00	0.26 11:00	0.40 13:00		0.42 11:45	0.54 12:15					0.161 0.171	
30	0.53 11:30	0.57 11:30	0.23 10:15	0.4 10:30	0.36 12:00			0.51 10:00	0.49 9:30	0.52 9:45			0.136 0.219	
31	0.61 12:30	0.62 12:30	0.18 11:15	0.33 11:30	0.29 10:30	0.31 11:10		0.50 11:00				350 164 514	0.13 0.219	
Average	0.69	0.68	0.26	0.23	0.44	0.49	0.57	0.58	0.53	0.47	0.47	379.74 176.80 436.7	0.18 0.16	
Median	0.69	0.65	0.25	0.27	0.44	0.51	0.59	0.59	0.56	0.485	0.48	410 213.5 425		
Total	21.37	21.07	8	7.12	13.61	5.84	5.7	18.11	5.27	4.66	4.19	11772 1768 13540	5.72 4.899	>1 >1
				1 ·								1. (

May 2021 Water Report for Fernie Alpine Resort Utilities Corp.

NOTE: For Independent Testing Column, if 'normal' must input < 1 / < 1 exactly in order for formula to work (spaces between everything)

flow meter plugged - estimate of flow

Comments:

The reservoir #2 continues to act as the end point in the system so residuals may be lower than 0.5mg/L.

					Jun	e 2021 Water	Report for Fer	<u>nie Alpine Res</u>	ort Utilities Co	rp.				
					Chlo	rine Residual (mg/L)					Water Usage (m ³)	Turbidity (NTU	Independent Testing
Day	Reservoir 1	Reservoir 2	New Reservoir	River Pump	WWTP	Shop	Tamarack	Lift Station	Lizard Creek	Snow Creek	Pantry	Water Usage (III)	runblany (NTO	
	CL ₂ Time	CL ₂ Time	CL ₂ Time	CL ₂ Time	Springs River Pp Total	Spring River	T. Coliform E. Coli							
1	0.58 9:45	0.57 9:45	0.22 10:00	0.33 15:15	0.46 15:30		0.35 10:45	0.56 10:15			0.39 10:30		3 0.126 0.219	
2	0.62 13:30	0.61 13:30	0.13 10:45	0.43 11:00	0.46 14:00		0.69 10:30	0.51 10:15		0.49 10:00				<1/<1 <1/<1 Tamarak, Snowcreek
3	0.78 10:45	0.66 10:45	0.2 11:00	0.31 12:00	0.59 10:15			0.55 11:15	0.45 11:45	0.43 11:30			6 0.12 0.175	
4	0.76 10:15	0.72 10:15	0.13 10:30	0.32 11:45	0.48 9:15	0.72 10:45		0.57 10:00					3 0.121 0.179	
5	0.77 11:00	0.77 11:00	0.17 11:15	0.33 14:00	0.61 10:00		0.7 11:30	0.57 12:15					2 0.119 0.216	
6	0.79 14:00	0.76 14:00	0.24 10:30	0.31 10:15	0.55 10:00			0.57 11:15	0.56 11:00	0.6 10:45			4 0.137 0.184	
7	0.67 12:40	0.77 12:40	0.25 9:50	0.31 13:00	0.44 12:10	0.29 9:45		0.63 10:10					5 0.16 0.324	
8	0.83 13:30	0.81 13:30	0.17 9:40	0.33 10:00	0.62 14:40		0.66 9:30	0.72 9:50					3 0.127 0.387	
9	0.78 12:50	0.9 12:50	0.22 9:50	0.34 10:10	0.72 9:20	0.54 9:40		0.67 10:00						< 1 / < 1 / < 1 Wastewater, Maintenance
10	1.01 13:20	0.75 13:20	0.12 13:30	0.32 14:45	0.42 11:45			0.65 13:50	0.52 14:00	0.45 13:45			3 0.123 0.16	
11	0.97 13:15	0.79 13:15	0.24 13:30	0.33 16:00	0.50 17:00	0.58 13:45		0.64 15:45			0.7 14:00		2 0.127 0.162	
12	0.95 14:00	0.95 14:00	0.16 14:15	0.31 15:00	0.49 10:00		0.52 14:30	0.69 15:30					0.446 0.151	
13	1.05 14:30	0.94 14:30	0.08 10:00	0.04 10:30	0.51 14:50			0.66 12:20	0.81 12:40	0.84 12:30			0.122 0.1224	
14	0.82 14:00	0.9 14:00	0.15 10:30	0.19 10:50	0.07 10:00	0.4 10:20		0.45 10:45					0.12 0.136	
15	1.12 12:30	1.03 12:30	0.08 15:30	0.28 11:15	0.51 11:45		0.47 12:40	0.50 12:50					5 0.166 0.129	
16	0.86 14:20	0.49 14:20	0.19 14:10	0.28 13:00	0.53 16:45			0.87 14:00	0.92 11:15		0.43 11:30		5 0.117 0.137	
17	1.05 14:30	0.95 14:30	0.22 15:00	0.28 10:00	0.48 14:00			0.51 14:00	0.63 13:00	0.46 13:15			0.123 0.15	
18	1.1 14:30	0.97 14:30	0.19 15:00	0.35 12:45	0.61 16:00	0.52 14:45		0.92 13:15			0.42 13:45		0.118 0.153	
19	0.85 14:00	0.89 14:00	0.35 14:00	0.26 9:15	0.26 15:30		0.15 14:15	0.00 13:15					6 0.115 0.139	
20	1.01 13:40	0.77 13:40	0 10:20	0.26 10:40	0.31 15:00			0.02 10:30	0.53 14:10	0.73 14:00			5 0.117 0.197	
21	0.9 8:30	0.75 8:30	0.09 8:15	0.35 8:00	0.42 10:00	0.41 9:15		0.56 9:00					3 0.117 0.277	
22	0.98 15:30	0.79 15:30	0.07 15:45	0.35 13:00	0.48 16:15		0.57 16:00	0.66 16:15			0.47 16:15		3 0.116 0.161	
23	0.71 13:30	0.77 13:30	0.02 14:00	0.32 11:30	0.35 13:00			0.67 14:15						< 1 / < 1 / < 1 / < 1 Lizard Creek, Pantry
24	0.8 11:30	0.85 11:30	0.1 14:00	0.35 8:45	0.32 12:30			0.65 14:30	0.26 14:45	0.37 15:00			3 0.114 0.141	
25	0.93 8:30	0.91 8:30	0.05 12:30	0.33 12:30	0.45 12:30	0.39 14:00		0.63 14:30					4 0.115 0.147	
26	1.06 13:15	0.81 13:15	0.06 12:30	0.35 9:00	0.53 9:00		0.63 12:45	0.72 14:00					0.115 0.148	
27	1.04 13:30	0.85 13:30	0.08 14:15	0.34 12:30	0.48 15:00			0.74 12:45	0.63 13:15	0.74 13:00			2 0.114 0.14	
28	1.21 10:00	0.82 10:00	0.05 13:45	0.35 8:00	0.40 13:00			0.71 11:30					3 0.11 0.142	
29	1.02 7:30	0.78 7:30	0 12:30	0.08 5:00	0.37 15:00		0.66 12:45	0.77 12:50					7 0.113 0.093	
30	1.23 15:30	0.82 15:30	0 11:00	0.08 6:00	0.40 16:50		0.61 11:30	0.77 10:30		0.24 10:15		112 1012 1124	4 0.114 0.099	< 1 / < 1 / < 1 / < 1 Tamarak, Snowcreek
31														
Average	0.91	0.81	0.13	0.29	0.46	0.48	0.55	0.60	0.59	0.54	0.51	170.70 343.00 513.70	0.13 0.17	
Median	0.915	0.8	0.13	0.32	0.48	0.465	0.61	0.645	0.56	0.475	0.45	149 326.5 504.5		
Total	27.25	24.15	4.03	8.81	13.82	3.85	6.01	18.14	5.31	5.35	5.11	5121 10290 15411	1 3.993 5.1804	>1 >1
_		NOTE	Cor Indonon	dont Tooti			and in a set	4 / . 4	4			and hotwoon ave		

June 2021 Water Report for Fernie Alpine Report Utilities Co

NOTE: For Independent Testing Column, if 'normal' must input < 1 / < 1 exactly in order for formula to work (spaces between everything)

Comments: The reservoir #2 continues to act as the end point in the system so residuals may be lower than 0.5mg/L.

_						y 2021 W			for Fer	nie Alp	oine Res	Sort Uti	lities Co	orp.									-
					Chlo	orine Resi	idual (n	ng/L)										Mater Harry	(3)	Turbidi		Independent Testing	
Day	Reservoir 1	Reservoir 2	New Reservoir	River Pump	WWTP	Sho	р	Tama	arack	Lift S	Station	Lizard	Creek	Snow	Creek	Par	ntry	Water Usage	(m ⁻)	Turbiai	(NTU)	independent resting	
	CL ₂ Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	Springs River Pp	Total	Spring	River	T. Coliform E. Coli					
1	1.35 10:00	0.67 10:00	0.08 8:15	0.08 10:45	0.24 11:15					0.57	9:15	0.38	10:35	0.1	10:30			60 760	820	0.113	0.212		1
2	1.69 13:00	0.72 13:00	0.15 11:15	0.33 11:20	0.50 14:20	0.1 1	1:00				13:15					0.46	10:50	90 647		0.116	0.127		4
3	0.99 10:00	0.87 10:00	0.07 14:00	0.57 13:00	0.57 13:00			0.65	10:15		10:30							60 808		0.117	0.152		1
4	0.87 13:00	0.77 13:00	0.1 12:45	0.08 12:00	0.14 15:00						12:00	0.22	12:30	0.06	13:20			85 700		0.111	0.107		1
5	0.72 8:45	0.79 8:45	0.05 13:00	0.42 7:30	0.35 8:00	0.29 1	2:45				12:30							69 486		0.113	0.552		1
6	1.15 13:00	0.78 13:00	0 12:45	0.33 10:40	0.44 14:20			0.76	14:15		10:30					1.05	10:30	80 307		0.104	0.108		1
7	1.31 10:15	0.69 10:15	0.04 10:20	0.34 9:30	0.50 9:45	0.57 1	0:30				10:00							60 831		0.111		<1/<1 <1/<1	Wastewater, Maintenance
8	1.3 9:45	0.72 9:45	0.03 10:00	0.07 10:45	0.53 11:00						8 10:15	0.64	10:20	0.72	10:30			67 546		0.107	0.148		1
9	1.46 10:30	0.73 10:30	0.22 10:45	0.07 8:15	0.16 14:00	0.38 1	1:00				10:00					0.48	10:15	67 681		0.107	0.093		1
10	1.11 11:00	0.49 11:00	0.07 8:30	0.06 10:30	0.12 18:00			0.01	12:00		14:30							64 619		0.11	0.093		4
11	1.39 11:30	0.52 11:30	0.27 9:30	0.37 10:30	0.53 10:00						13:15	0.44	13:00	0.53	12:45			61 671		0.113	0.154		1
12	1.79 10:10	0.71 10:10	0.54 13:30	0.31 11:20	0.42 15:50	0.54 1	3:40				10:30							55 724		0.108	0.15		4
13	1.14 10:45	0.63 10:45	0.2 11:00	0.06 12:45	0.57 13:30			0.45	11:15		12:30							55 695		0.108	0.098		4
14	0.64 10:00	0.67 10:00	0.2 9:20	0.08 11:30	0.67 15:00						10:30		10:20			0.16	10:15	50 794		0.104			Lizard Creek, Pantry
15	0.98 9:00	0.44 9:00	0.22 12:00	0.06 8:30	0.42 15:00						5 10:00	0.12	9:50	0.26	9:40			50 737	787		0.102		4
16	0.88 10:30	0.44 10:30	0.2 14:45	0.06 7:00	0.05 9:00	0.02 1	5:00				10:30					0.13	10:45	52 799		0.109	0.102		4
17	0.55 10:30	0.43 10:30	0.2 14:45	0.49 9:00	0.24 16:00			0.61	10:00		2 11:30							50 473		0.11	0.155		1
18	0.34 8:30	0.59 8:30	0.21 15:15	0.31 8:00	0.56 8:15						11:40	0.46	11:30	0.49	11:20			40 1462		0.106	0.121		1
19	0.86 10:00	0.25 10:00	0.27 16:00	0.38 8:00	0.39 16:15	0.31 1	2:45				12:30							50 503		0.109	0.256		1
20	0.92 10:30	0.48 10:30	0 14:45	0.21 7:00	0.12 15:30				10:45		11:10					0.47	11:00	45 547		0.107	0.137		4
21	0.62 9:50	0.34 9:50	0.14 15:15	0.33 7:30	0.01 15:45			0.79	10:45		10:15				10:30			40 721		0.109		<1/<1 <1/<1	Tamarak, Snowcreek
22	0.39 9:30	0.28 9:30	0.23 13:45	0.28 7:45	0.24 15:00						10:50	0.42	10:30	0.43	10:40			42 524		0.108	0.162		1
23	0.89 10:30	0.48 10:30	0.19 11:00	0.36 6:30	0.28 13:00	0.37 1	4:15				6 11:15					0.11	14:00	43 788		0.109	0.147		4
24	1.45 10:00	0.73 10:00	0.1 10:30	0.02 8:00	1.04 14:00			0.09	12:00		10:45							39 1074		0.109	0.107		4
25	1.52 9:15	0.72 9:15	0.12 13:00	0.11 7:45	0.58 11:15						3 11:50	0.6	11:45	0.64	11:30			36 370		0.107	0.199		1
26	1.95 13:00	0.78 13:00	0.2 16:10	0.26 7:50	0.33 14:30	0.38 1	6:00				10:20							45 717		0.108	0.144		1
27	1.85 10:00	0.56 10:00	0.15 13:45	0.25 6:45	0.29 15:00			0.6	10:15		10:40					0.89	10:30	30 1041		0.107	0.1		4
28	1.52 10:40	0.52 10:40	0.07 15:00	0.41 6:45	0.51 11:30	0.42 1	1:45				5 11:00							36 564		0.109		<1/<1 <1/<1	Wastewater, Maintenance
29	1.67 10:10	0.93 10:10	0.07 13:00	0.7 6:45	0.62 14:00						9:20	0.09	9:40	0.75	9:30			33 1072		0.106	0.112		1
30	1.57 12:00	0.94 12:00	0.14 11:00	0.33 6:30	0.50 14:00	0.45 1	2:30				11:30					0.25	14:00	34 905		0.104	0.105		1
31	1.69 10:30	1.01 10:30	0.09 10:45	0.41 7:00	0.35 7:30				11:15		11:00							28 780		0.109	0.09		1
Average		0.63	0.15	0.26	0.40	0.35		0.47		0.52		0.35		0.43		0.44		52.13 720.84	772.97	0.11	0.14		1
Median	1.15	0.67	0.14	0.31	0.42	0.38		0.525		0.57		0.4		0.46		0.46		50 717	762		0.12		4
Total	36.56	19.68	4.62	8.14	12.27	3.83		4.66		16.27		3.46		4.34		4		1616 22346	23962	3.368	4.486	ok ok	J

July 2021 Water Report for Fernie Alpine Resort Utilities Corp.

NOTE: For Independent Testing Column, if 'normal' must input < 1 / < 1 exactly in order for formula to work (spaces between everything)

Comments:

The reservoir #2 continues to act as the end point in the system so residuals may be lower than 0.5mg/L.

								Augu	st 2021	Water	Repor	t for F	ernie A	lpine R	esort U	tilities	Corp.										
								Chlo	rine Re	sidual (n	ng/L)										10/		(3)	Furbidity		Independent Testing	
Day	Reservoir	1	Reservoir 2	New Reserve	voir	River Pump	WW	TP	Sh	ор	Tam	arack	Lift S	tation	Lizard	l Creek	Snow	Creek	Pan	ntry	wate	er Usage	e (m ⁻)	urbiaity	(1110)	independent resting	
	CL ₂ T	ime	CL ₂ Time	CL ₂ Tin	me	CL ₂ Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	Springs	River Pp	Total S	Sprina	River	T. Coliform E. Coli	
1	10:30 1.6		10:30 0.51	0.13 14:50	0	0.87 12:30	0.03	12:00	-		_		0.01	9:20	0.39	12:25	0.06	12:15	_			1434	1464 0		0.322		
2	11:15 1.76	5	11:15 0.81	0.16 15:15	5	0.21 7:00	0.41	10:00	0.2	15:30			0.19	11:00							29	560	589 0	.104	0.102		
3	9:45 1.66	5	9:45 0.8	0.17 15:15	5	0.02 8:00	0.22	13:00					0.03	10:00	0.5	10:00			0.39	10:20	28	758	786 0	.108	0.091		
4	10:45 1.37	7	10:45 0.61	0.19 15:20	0	0.23 8:30	0.38	15:45					0.47	12:30	0.56	12:20	0.62	10:45			32	431	463 0	.104	0.161	<1/<1 <1/<1	Lizard Creek, Pantry
5	13:15 1.39	9	13:15 0.77	0.17 11:30		0.25 9:20	0.36		0.25	11:20				10:50					0.05	11:15	34		709 0		0.198		
6	12:15 1.44		12:15 0.67	0.25 13:15		0.02 8:00	0.31				0.26	9:15		10:45							28		958 0		0.089		
7	10:20 1.51		10:20 0.56	0.09 14:00		0.86 9:00	0.11 9							12:30		13:00		12:45				379	404 0		0.292		
8	13:45 1.58	3	13:45 0.38	0.13 14:50		0.01 8:00	0.03							9:20	0.39	12:25	0.06	12:15			34		660 0		0.255		
9	16:00 0.87		16:00 0.52	0.12 11:40		0.33 8:30	0.44 1		0.21	0.47917				11:20								558	603 0		0.137		
10	12:45 1.53	3	12:45 0.32	0.12 10:30		0.35 6:45	0.23					10:15		10:45					0.12	0.44444		236	269 0		0.160		
11	11:50 1.5		11:50 0.46	0.18 11:10		0.05 8:00	0.15				0.49	0.45139		10:30				10:40			31		498 0		0.109	<1/<1 <1/<1	Tamarak, Snowcree
12	10:50 1.75		10:50 0.65	0.11 14:00		0.23 7:00	0.66 1							9:30	0.8	0.41667	0.58	0.40625				521	546 0		0.116		
13	9:30 1.66	5	9:30 0.76	0.19 13:30		0.2 7:30	0.42		0.25	0.57292				10:00					0.63	0.40625		777	802 0		0.113		
14	14:00 1.3		14:00 0.62	0.01 17:00		0.21 8:00	0.30 9				0.48	0.71875		14:30								414	444 0		0.108		
15	14:00 1.07	7	14:00 0.71	0.04 0.666	667	0.22 9:00	0.28 (0.38542					0.39	0.60417	0.37	0.625	0.48	0.61458			23	806	829 0	.132	0.108		
16	8:30 0.79)	8:30 0.63	0.23 14:15	5	0.3 7:30	0.33		0.33	14:00			0.49	13:45							17	662	679 0	.119	0.264		
17	11:30 0.6		11:30 0.58	0.16 16:00		0.25 8:15	0.42				0.51	13:30		9:15					0.43	13:15	27	460	487 7		0.105		
18	11:15 0.71	1	11:15 0.59	0.14 16:00	0	0.22 8:00	0.22 1	10:00	0.4	10:15			0.45	12:30							0	634	634 0	.803	0.218	<1/<1 <1/<1	Wastewater, Mainte
19	12:15 0.64	1	12:15 0.53	0.12 16:00	0	0.22 8:30	0.30	16:50					0.34	12:45	0.39	11:30	0.42	11:45			0	600	600 0	.203	0.133		
20	10:30 0.55	5	10:30 0.55	0.14 16:15		0.23 7:45	0.27		0.29	16:00				10:45					0.31	10:45		481	513 0		0.119		
21	13:30 0.6		13:30 0.58	0.1 16:00		0.27 11:00	0.30				0.42	13:15		14:00								626	660 0		0.093		
22	11:30 0.66		11:30 0.6	0.17 16:00		0.04 8:00	0.56							13:20	0.66	13:40	0.31	13:30				469	496 0		0.173		
23	11:15 0.52		11:15 0.5	0.07 14:45		0.28 9:30	0.45		0.28	11:00				15:00								355	358 0		0.222		
24	10:45 0.78		10:45 0.52	0.25 11:10		0.2 7:15	0.59 9				0.96	10:30		11:30					0.85	10:20		364	364 0		0.167		
25	10:15 0.97		10:15 0.67	0.21 13:30		0.22 7:30	0.40							10:30								429	466 0		0.038		
26	11:30 1.24		11:30 0.76	0.13 13:00		0.2 7:30	0.47							12:00	0.31	10:00				10:15		486	520 0		0.113		
27	10:15 1.89	3	10:15 0.72	0.2 10:30		0.22 8:00	0.56		0.39	10:45				10:30					0.48	10:45		528	555 0		0.012		
28	12:45 1.6		12:45 0.75	0.22 13:15		0.2 10:00	0.60				0.48	13:00		13:30							30		425 0		0.114		
29	15:45 1.2		15:45 0.85	0.17 10:45		0.23 9:15	0.58							10:00	0.82	10:30	0.33	10:15				531	560 0		0.119		
30	9:30 0.95	5	9:30 0.88	0.13 13:15		0.21 9:00	1.06 1		0.64	9:50				9:10								321	340 0		0.113		
31	10:30 0.8		10:30 0.8	0.14 16:00	0	0.2 9:30	0.40	15:00			0.56	10:30	0.97	9:45	0.46	14:00			0.06	10:00		374	398 0	.146	0.158	<1/<1 <1/<1	Lizard Creek, Pantry
/erage	0.49		0.49	0.15		0.24	0.38		0.32		0.48		0.48		0.49		0.30		0.37		25.55	557.65	583.19	0.42	0.15		
ledian	0.46875		0.46875	0.14		0.22	0.38		0.285		0.48		0.48		0.425		0.32		0.405		28	521	546		0.119		
otal	15.0938		15.0938	4.64		7.55	11.84		3.24		4.35		14.86		5.91		3		3.74		792	17287	18079	12.911	4.522	>1 >1	

NOTE: For Independent Testing Column, if 'normal' must input < 1 / < 1 exactly in order for formula to work (spaces between everything)

Comments:

The reservoir #2 continues to act as the end point in the system so residuals may be lower than 0.5mg/L.

								er Repo	rt for F	-ernie	Alpine	Resort u	tilities	s Corp.									-
					Chlo	orine Res	sidual (n	ng/L)										Water Usage	(m ³)	Turbidit		Independent Testing	
Day	Reservoir 1	Reservoir 2	New Reservoir	River Pump	WWTP	Sh	ор	Tamar	rack	Lift S	tation	Lizard C	Creek	Snow C	Creek	Pant	try	water Usage	; (m.)	Turbiuit	y (1110)	independent reating	
	CL ₂ Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	Springs River Pp	Total	Spring	River	T. Coliforn E. Coli					
1	0.6 11:00	0.85 11:00	0.16 10:30	8:30 0.31	0.58 7:25					0.96	10:45							21 508	529	0.143	0.263		1
2	0.34 11:00	0.84 11:00	0.15 13:30	9:45 0.25	0.95 10:00						10:40	0.64 1	0:30	0.84 1	10:15			31 366		0.142	0.165		1
3	0.62 12:45	1 12:45	0.12 12:00	9:30 0.19	0.90 13:00	0.58	12:45				16:00					0.72 1	13:15	21 248		0.139	0.115		1
4	1.14 12:30	0.98 12:30	0.14 15:30	11:15 0.18	0.77 16:00			1.10 1	12:45		16:00							18 402		0.138	0.114		1
5	1.2 10:00	0.71 10:00	0.21 15:30	9:15 0.3	0.82 9:00						12:00	0.87 1	1:50	0.81 1	11:40			15 491		0.135	0.16		1
6	1.03 10:15	0.64 10:15	0.19 14:45	6:30 0.32	0.56 10:00	0.37	11:00				11:15							16 411		0.134	0.118		1
7	0.74 10:45	0.56 10:45	0.21 15:30	9:30 0.47	0.33 10:30			0.41 1			11:00					0.49 1	13:00	16 847		0.133	0.108		4
8	0.82 9:30	0.55 9:30	0.17 12:20	7:00 0.07	0.06 9:00			0.55 1	10:00	0.51	10:20			0.54 1	10:10			15 410	425	0.135	0.082	<1/<1<1/	Tamarak, Snowcreek Lodge
9	0.89 11:30	0.51 11:30	0.15 17:00	9:00 0.49	0.32 10:00					0.40	11:45	0.31 1	1:30	0.42 1	11:45			16 297	313	0.133	0.111		4
10	1.14 15:30	0.53 15:30	0.14 13:00	10:30 0.67	0.43 15:00	0.32	15:30				16:00					0.16 1	15:15	16 611		0.131	0.114		4
11	1.57 13:15	0.58 13:15	0.12 13:30	9:00 0.69	0.40 10:00			0.56 1	13:45	0.47	14:00							13 354	367	0.173	0.117		4
12	1.87 12:15	0.55 12:15	0.13 12:45	10:00 0.54	0.41 11:00					0.43	9:45	0.46 1	4:00	0.14 1	13:50			15 331	346	0.176	0.122		4
13	1.8 11:00	0.57 11:00	0.14 10:50	8:30 0.57	0.48 8:40	0.36	10:40				11:15							17 268		0.133	0.117		4
14	1.49 10:30	0.55 10:30	0.29 14:00	9:45 0.52	0.46 9:30			0.27 1	13:45	0.50	10:15					0.53 1	00:01	17 279	296	0.130	0.119		4
15	1.05 13:30	0.7 13:30	0.14 10:30	8:45 0.2	0.25 10:00	0.32	10:20			0.52	10:05							14 348		0.130	0.212	<1/<1<1/	WWTP, Maintenace Shop
16	0.85 14:30	0.37 14:30	0.1 10:45	8:30 0.11	0.13 8:45					0.43		0.37 1	0:15	0.44 1	10:00			15 308		0.133	0.2		4
17	1 11:00	0.53 11:00	0.35 15:00	9:30 0.17	0.23 9:15	0.24	14:15				10:30					0.35 1	14:00	12 306		0.133	0.198		4
18	1.13 11:00	0.52 11:00	0.22 11:15	8:30 0.6	0.56 10:30			0.52 1	11:30	0.37	12:00							17 333	350	0.248	0.126		4
19	0.96 11:45	0.31 11:45	0.19 14:30	9:15 0.56	0.58 9:00					0.48	11:15	0.42 1	0:30	0.48 1	10:45			33 286	319	1.200	0.003		4
20	1.03 10:00	0.45 10:00	0.22 10:30	8:15 0.2	0.25 11:00	0.33	10:40				10:50							0 355		0.550	0.267		4
21	1.47 13:30	0.54 13:30	0.25 8:45	8:15 0.51	0.34 7:15			0.21 9	9:30	0.38	8:30					0.21 9		50 283	333	0.181	0.247		1
22	1.85 10:45	0.54 10:45	0.27 10:30	9:45 0.64	0.32 12:00					0.39	15:30	0.23 1	0:00			0.34 1	10:15	28 257	285	0.166	0.25	<1/<1 <1/<1	Pantry, Lizard Creek Lodge
23	1.81 10:30	0.49 10:30	0.22 13:00	9:45 0.2	0.40 14:00					0.47	11:00	0.28 1	1:00	0.24 1	11:15			26 286		0.165	0		4
24	1.85 11:15	0.77 11:15	0.36 11:00	10:45 0.08	0.52 10:00	0.34	11:15			0.58	12:00					0.44 1	11:30	24 429		0.152	0.072		1
25	1.48 11:30	0.6 11:30	0.3 11:45	11:00 0.38	0.50 12:00			0.7 1	11:15	0.68	11:45							25 180	205	0.153	0.085		4
26	0.72 10:45	0.62 10:45	0.23 13:30	9:45 0.44	0.58 15:30					0.72	11:15	0.57 1	1:30	0.73 1	11:45			21 302	323	0.148	0.115		4
27	0.76 13:30	0.59 13:30	0.26 9:50	8:30 0.19	0.28 15:30	0.37	9:15			0.74	9:30							22 326	348	0.144	0.075		4
28	1.21 13:00	0.59 13:00	0.21 13:30	8:30 0.12	0.60 8:45			0.69 9	9:50	0.47	9:30					0.73 9	9:40	20 293	313	1.125	0.068		1
29	1.16 10:15	0.55 10:15	0.26 11:00	9:45 0.22	0.40 8:30			0.35 1	10:00	0.60	9:40			0.3 9	9:45			0 368	368	0.454	0.132	<1/<1 <1/<1	Tamarak, Snowcreek Lodge
30	1.52 8:50	0.56 8:50	0.33 9:00	15:30 0.27	0.38 8:00					0.46	10:10	0.48 1	0:00	0.54 9	9:45			54 291	345	0.226	0.13		1
31																							4
Average	1.17	0.61	0.21	0.39	0.46	0.36		0.54		0.56		0.46		0.50		0.44		20.27 359.13	379.40	0.24	0.13		1
Median	1.135	0.56	0.21	0.39063	0.42	0.34		0.535		0.485		0.44		0.48		0.44		17 328.5	347	0.1435	0.1175		4
Total	35.1	18.15	6.23	11.7604	13.79	3.23		5.36		16.87		4.63		5.48		3.97		608 10774	11382	7.283	4.005	>1 >1	1

September 2021 Water Report for Fernie Alpine Resort Utilities Corp.

NOTE: For Independent Testing Column, if 'normal' must input < 1 / < 1 exactly in order for formula to work (spaces between everything)

Comments:

The reservoir #2 continues to act as the end point in the system so residuals may be lower than 0.5mg/L.

7 1.18 1.30 0.52 11:30 0.22 11:20 0.71 11:15 28 344 372 0.134 0.068 8 0.99 11:45 0.61 11:40 0.22 11:20 0.71 11:15 0.41 10.02 28 344 372 0.134 0.068 9 1.07 15:00 0.62 15:00 0.22 15:15 0.17 13:15 0.41 16:00 0.61 14:45 0.64 13:00 0.59 13:1 147 178 0.133 0.08 10 1.46 0.66 16:00 0.62 10:0 0.59 8.45 0.29 11:0 0.33 10:31 0.08 11 1.21 14:00 0.46 14:00 0.23 10:30 0.22 11:0 0.33 0.80 0.03 10:15 0.14 12:45 0.51 14:15 0.28 10:30 0.23 10:30 0.32 12:7 0.13 0.32 22:7 13:30 0.33 0.133 0.4 12:7 0.133 0.28										Corp.	Itilities	esort U	lpine F	ernie A	rt for F	r Repor	1 Wate	er 202	Octob							
Dey Reservoir Reversion / River Pump WWTP Shop Tamarack Litt Sation Litt Sat				Turkidi	(3)											ng/L)	sidual (r	rine Re	Chlo							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ang	independent resting	у (NTO)	Turbiai	(m ⁻)	r Usage (r	wate	Pantry	Creek	Snow	Creek	Lizard	tation	Lift S	arack	Tam	юр	Sł	NTP	WV	River Pump	New Reservoir	Reservoir 2	Reservoir 1	Day	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Coli	T. Coliform E. Coli	River	Spring	Total	River Pp	Springs	CL ₂ Time	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	CL ₂ Time	CL ₂ Time	CL ₂ Time	CL ₂ Time		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			0	0.164	51	0	51	0.4 9:15					9:20	0.51			9:00	8:38	10:00	0.48	0.14 7:15				1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				0.148	46	0	46								10:30	0.42									2	
5 0.771 14:00 0.261 14:30 0.221 13:31 0.221 13:31 0.221 13:31 0.221 13:30 0.221 14:45 0.641 13:00 0.221 13:31 0.411 14:7 17:7 16:33 0.321 13:31 0.311 0.321 0.241 11:45 0.641 13:00 0.221 13:31 0.411 13:31 0.411 13:31 0.311 0.321 0.321 0.311 0.321 0.311 0.321 0.311 0.321 0.311 0.321 0.321 0.311							41		11:15	0.51	11:30	0.54													3	
6 0.0211300 0.0211300 0.0211300 0.						246											14:10	0.34							4	
7 1.18 1.30 0.32 11:30 0.32 11:30 0.31 0.15 0.51 11:00 0.29 11:12 0.71 11:15 28 344 372 0.134 0.058 8 0.99 11.45 0.81 15:00 0.62 15:00 0.21 11:15 0.51 11:00 229 351 371 0.133 0.061 10 14:00 0.42 15:00 0.62 15:00 0.59 8.45 0.62 20 351 371 0.133 0.081 11 12:1 14:00 0.46 14:00 0.22 10:50 0.62 9:00 0.59 8.45 0.61 14:45 0.61 14:45 0.61 14:45 0.61 14:45 0.61 14:45 0.62 9:00 0.59 8.45 0.41 10:31 0.081 14:45 0.61 14:45 0.61 14:45 0.61 14:45 0.61 14:45 0.61 14:45 0.61 14:45 0.61 15:0 0.62 9:0 0.62 16:0 0.5				0.138	226	192	34	0.19 13:40							13:50	0.93									5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	< 1 WWTP, Maintenace Shop					136	37										10:40	0.34							6	
9 107 15:00 0.62 15:00 0.22 15:15 0.17 13:15 0.48 6:00 0.61 14:45 0.64 8:30 0.62 9:00 0.59 8:45 0.23 351 371 0.133 0.088 11 1.21 14:00 0.24 14:00 0.23 15:0 0.41 12:1 14:00 0.51 14:15 - 0.28 10:0 33 395 428 0.13 0.081 1.33 13:10 0.31 10:30 0.23 8:00 0.02 10:45 0.66 15:10 - 0.28 10:30 33 395 428 0.133 0.4 1/<< <td>1 1 1.33 13:10 0.25 11:00 0.02 10:40 0.44 12:45 0.51 10:30 0.22 13:30 0.4 1/ 1/ 1 1.33 13:10 0.25 11:00 0.22 13:30 0.4 1/ 1/ 1 1.33</td> <td></td> <td></td> <td>0.059</td> <td></td> <td></td> <td></td> <td>28</td> <td></td> <td>11:15</td> <td>0.71</td> <td>11:20</td> <td>0.29</td> <td></td> <td>7</td>	1 1 1.33 13:10 0.25 11:00 0.02 10:40 0.44 12:45 0.51 10:30 0.22 13:30 0.4 1/ 1/ 1 1.33 13:10 0.25 11:00 0.22 13:30 0.4 1/ 1/ 1 1.33			0.059				28		11:15	0.71	11:20	0.29													7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0	0.133	317	289	28	0.41 10:00					11:00	0.59			11:15	0.24	10:15	0.33	0.06 10:30	0.28 11:30	0.6 11:45	0.99 11:45	8	
11 1.21 14:00 0.46 14:00 0.28 0.05 0.43 0.40 0.51 14:15 0 0.37 295 332 0.174 0.088 12 1.33 13:10 0.51 13:10 0.21 10:30 0.22 10:00 0.32 10:45 0.66 15:10 0 0.28 10:00 33 395 428 0.13 0.4 1/<1							31								14:45	0.61									9	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.081			351	20		8:45	0.59	9:00	0.62	8:30	0.64							0.06 8:15	0.18 9:20			10	
138 138 1310 0.28 1310 0.28 1015 0.61 900 0.82 0.44 2.45 0.65 10.30 32 2471 503 0.133 0.4 1/<<1			0.088	0.174	332	295	37						14:15	0.51			10:40	0.43	10:15	0.40	0.49 9:45	0.29 10:50	0.46 14:00	1.21 14:00	11	
14 135 1300 0.68 1300 0.22 1100 0.20 800 0.50 0.32 1300 0.41 1630 0.32 16:15 32 293 325 0.127 0.113 15 1.00 1000 0.35 1030 0.04 16:30 0.32 16:15 1300 0.4 1300 237 247 270 0.127 0.055 16 0.08 14:00 0.32 13:45 0.06 10:30 0.66 11:00 23 247 270 0.127 0.018 17 0.68 11:00 0.84 11:00 0.26 13:30 0.06 11:15 0.4 130 33 279 312 0.018 18 0.57 14:00 0.34 14:10 0.66 14:30 0.66 14:10 0.68 11:15 0.33 10:17 178 0.132 0.091 19 1.37 13:45 0.71 13:45 0.31 14:10 0.66 14:10 0.44 10:20 14:11 123 0			0.1	0.135	428	395	33	0.28 11:00							10:45	0.32					0.23 8:00	0.31 10:30		1.33 13:10	12	
1 0.9 10.00 0.72 10.00 0.33 13.33 0.06 8.30 0.17 0.83 14.00 0.33 13.45 0.60 10.30 0.4 13.00 23 247 270 0.127 0.055 16 0.83 14.00 0.63 14.00 0.23 13.45 0.60 10.30 0.61 10.30 23 247 270 0.127 0.055 16 0.83 14.00 0.63 14.40 0.33 14.15 0.67 13.00 0.68 11.35 25 344 369 0.132 0.061 18 0.57 14.00 0.38 11.15 0.70 12.45 0.54 11.30 0.68 11.15 25 344 369 0.132 0.061 19 1.37 13.45 0.71 13.45 0.31 14.00 0.31 14.00 0.61 10.20 0.66 13.10 0.48 10.00 277 214 241 0.123 0.093 20 1.56 11.15 0.27 11.40 0.28 <td>< 1 Tamarak, Snowcreek Lodge</td> <td><1/<1 <1/<1</td> <td>0.4</td> <td>0.133</td> <td>503</td> <td>471</td> <td>32</td> <td></td> <td>10:30</td> <td>0.53</td> <td></td> <td></td> <td>12:45</td> <td>0.44</td> <td>10:45</td> <td>0.82</td> <td></td> <td></td> <td></td> <td></td> <td>0.96 10:15</td> <td>0.25 11:00</td> <td>0.38 13:10</td> <td>1.38 13:10</td> <td>13</td>	< 1 Tamarak, Snowcreek Lodge	<1/<1 <1/<1	0.4	0.133	503	471	32		10:30	0.53			12:45	0.44	10:45	0.82					0.96 10:15	0.25 11:00	0.38 13:10	1.38 13:10	13	
16 0.83 14:00 0.68 14:00 0.32 13:45 0.06 11:00 0.24 0.13 0.14 0.16 0.13 0.16 11:15 0.25 3.44 3.65 0.12 0.33 1.15 0.26 11:10 0.28 11:15 0.26 11:10 0.66 11:15 0.66 11:15 0.66 11:10 0.			0.113	0.127	325	293	32		15:15	0.32	15:30	0.41									0.20 8:00			1.35 13:00	14	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			0.055	0.127	270	247	23	0.4 13:00					10:30	0.60			13:15	0.33	9:30	0.17	0.06 8:30	0.35 13:30		1.09 10:00	15	
18 0.57 14:00 0.44 14:00 0.38 11:15 0.06 14:15 0.66 14:30 0.66 14:30 0.66 14:30 0.66 14:30 0.66 14:30 0.66 14:30 0.66 14:30 0.66 14:30 0.66 14:30 0.66 14:30 0.66 14:30 0.66 14:10 0.66 14:10 0.48 0.00 27 214 0.127 0.066 20 1.55 11:15 0.57 11:15 0.26 10:00 0.48 10:00 27 214 0.123 0.079 $(1/< 1 < 1)$ $(1/ 2)$ 0.66 13:10 (0.66) $(1/ 2)$ 0.66 $(1/ 2)$ 0.66 $(1/ 2)$ 0.66 $(1/ 2)$ 0.66 $(1/ 2)$ 0.66 $(1/ 2)$ 0.66 $(1/ 2)$ 0.66 $(1/ 2)$ 0.64 $(1/ 2)$ 0.64 $(1/ 2)$ 0.64 $(1/ 2)$ 0.64 $(1/ 2)$ 0.64 $(1/ 2)$ 0.64 $(1/ 2)$ 0.65 $(1/ 2)$ 0.65 $(1/ 2)$ $(1/ 2)$ <td></td> <td></td> <td></td> <td>0.143</td> <td>312</td> <td>279</td> <td>33</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>14:15</td> <td>0.33</td> <td></td> <td></td> <td></td> <td></td> <td>0.06 11:00</td> <td></td> <td></td> <td></td> <td>16</td>				0.143	312	279	33								14:15	0.33					0.06 11:00				16	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.091	0.132	369	344	25		11:15	0.68	11:30	0.54	12:45	0.70					9:30	0.58	0.05 9:45	0.26 13:30	0.84 11:00	0.63 11:00	17	
20 1.56 11:15 0.57 11:15 0.57 11:15 0.27 11:00 0.28 10:00 0.44 10:30 0.64 10:30 0.64 10:30 0.31 10:45 0.66 13:10 0 24 304 328 0.123 0.079 <1/< 1 21 1.32 10:30 0.64 10:30 0.3 10:45 0.40 10:00 0.64 10:30 38 169 207 0.141 0.08 22 1.11 11:15 0.83 11:15 0.27 10:30 0.41 10:00 0.42 11:45 0.65 11:00 0.64 10:30 38 169 207 0.141 0.08 23 1.02 14:30 0.63 14:45 0.65 15:30 0.65 12:20 0.58 12:20 0.71 16:5 243 4.75 0.08 24 0.91 0.31 0.30 0.22 11:00 0.56 12:20 <td></td> <td></td> <td>0.068</td> <td>0.127</td> <td>178</td> <td>147</td> <td>31</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>14:30</td> <td>0.69</td> <td></td> <td></td> <td>11:00</td> <td>0.37</td> <td>14:15</td> <td>0.43</td> <td>0.06 11:30</td> <td>0.38 11:15</td> <td>0.44 14:00</td> <td>0.57 14:00</td> <td>18</td>			0.068	0.127	178	147	31						14:30	0.69			11:00	0.37	14:15	0.43	0.06 11:30	0.38 11:15	0.44 14:00	0.57 14:00	18	
1 1.32 10:30 0.64 10:30 0.31 0.45 0.28 9:45 0.30 0.55 10:15 0.5 9:46 0.44 10:00 30 195 225 0.708 0.08 22 11.11 11:5 0.21 11:30 0.27 10:45 0.44 10:00 10:30 31 16:6 207 0.141 0.08 23 1.02 14:30 0.68 14:30 0.31 14:45 0.27 10:45 0.61 14:15 0.65 15:30 78 165 243 4.75 0.08 24 0.9 11:45 0.21 11:45 0.61 14:15 0.65 15:30 78 165 243 4.75 0.08 24 0.9 11:45 0.21 10:40 0.51 10:50 0.65 12:00 0.58 12:00 0.62 12:30 0.65 12:00 0.65 12:00 0.65 12:00 0.65 12:00 0.65 12:00 0.65 12:00 0.65 12:00 0.65 12:00			0.099	0.123	241	214	27	0.48 10:00					14:10	0.66	10:20	0.61			14:00	0.39	0.29 9:40	0.38 10:10	0.7 13:45		19	
22 1.1 11:15 0.83 11:15 0.27 11:30 0.27 10:45 0.00 0.42 11:45 0.64 11:00 0.64 10:30 38 169 207 0.141 0.066 23 1.02 14:30 0.64 14:30 0.3 14:45 0.27 11:00 0.50 10:00 0.61 14:15 0.65 12:30 0.58 12:00 78 165 243 4.75 0.084 24 0.91 11:45 0.71 11:45 0.88 9:30 0.68 9:30 0.33 169 207 0.141 0.086 25 0.58 9:30 0.68 9:30 0.33 10:30 0.27 9:00 0.51 8:50 0.66 12:20 0.58 12:00 0.25 255 0.33 0 26 0.59 9:30 0.63 9:30 0.41 14:00 0.41 12:00 0.67 11:00 0.32 12:15 0.66 66 0.3 0.127 27 0.52 9:00 0	< 1 WWTP, Maintenace Shop	<1/<1 <1/<1	0.079	0.123	328	304	24						13:10	0.66			10:45	0.37	10:30	0.44	0.26 10:00	0.27 11:00	0.57 11:15	1.56 11:15	20	
23 1.02 14:30 0.68 14:30 0.61 14:15 0.61 14:15 0.61 16:5:0 78 165 243 4.75 0.084 24 0.9 11:45 0.8 10:10 0.50 8:50 78 165 243 4.75 0.084 25 0.9 11:45 0.38 9:10 0.13 9:00 0.51 8:15 0.66 12:30 0.58 12:00 0 25 255 255 0.03 0 223 232 2.98 0.135 26 0.59 10:30 0.51 16:30 0.44 9:45 0.66 9:15 9 223 232 2.98 0.135 26 0.59 10:30 0.51 16:30 0.44 9:45 0.67 11:00 0.22 10:45 0.32 12:15 0 66 6.0 0.127 27 0.52 9:00 0.61 16:30 0.44 9:45 0.57 11:00 0.22 10:45 0.32 2:15 0 66 0.3 </td <td></td> <td></td> <td>0.08</td> <td>0.708</td> <td>225</td> <td>195</td> <td>30</td> <td></td> <td>10:00</td> <td>0.44</td> <td>9:45</td> <td>0.5</td> <td>10:15</td> <td>0.55</td> <td></td> <td></td> <td></td> <td></td> <td>9:30</td> <td>0.36</td> <td>0.28 9:45</td> <td>0.3 10:45</td> <td>0.64 10:30</td> <td>1.32 10:30</td> <td>21</td>			0.08	0.708	225	195	30		10:00	0.44	9:45	0.5	10:15	0.55					9:30	0.36	0.28 9:45	0.3 10:45	0.64 10:30	1.32 10:30	21	
24 0.9 11:45 0.71 11:45 0.38 9:10 0.13 9:00 0.50 8:50 0.65 12:30 0.58 12:20 0.58 12:20 0.58 12:20 0.58 12:20 0.65 12:20 0.58 12:20 0.51 12:00 <th< td=""><td></td><td></td><td>0.086</td><td></td><td></td><td>169</td><td>38</td><td>0.64 10:30</td><td></td><td></td><td></td><td></td><td>11:00</td><td>0.54</td><td></td><td></td><td>11:45</td><td>0.42</td><td></td><td></td><td>0.27 10:45</td><td>0.27 11:30</td><td>0.83 11:15</td><td></td><td>22</td></th<>			0.086			169	38	0.64 10:30					11:00	0.54			11:45	0.42			0.27 10:45	0.27 11:30	0.83 11:15		22	
25 0.58 9:30 0.68 9:30 0.3 13:00 0.27 9:00 0.51 8:15 0.44 9:45 0.60 9:15 0.21 0.02 9 223 232 2.98 0.135 26 0.59 0:50 0.60 9:15 0.60 9:15 0.21 9 223 232 2.98 0.135 26 0.59 0:51 0:30 0.51 13:15 0.44 9:45 0.57 11:00 0.21 10:30 0.26 66 0.3 0.127 27 0.52 9:00 0.61 13:15 0.24 10:30 0.44 9:45 0.59 9:15 0.22 10:45 0.30 0.28 2808 0.184 <1/<<1<			0.084	4.75	243	165	78						15:30	0.65	14:15	0.61			10:00	0.50	0.27 11:00	0.3 14:45	0.68 14:30	1.02 14:30	23	
26 0.59 10:30 0.53 10:30 0.19 14:00 0.46 10:00 0.41 12:00 0.57 11:00 0 0.32 12:15 0 66 66 0.3 0.127 27 0.52 10:30 0.45 13:15 0.24 10:30 0.44 9:45 0.59 9:15 0.22 10:45 0.31 0.26 286 2.808 0.184 < 1 / < 1 < 1			0	0.303	255	255	0		12:00	0.58	12:20	0.58	12:30	0.65					8:50	0.50	0.13 9:00	0.38 9:10	0.71 11:45	0.9 11:45	24	
27 0.52 0:00 0.61 9:00 0.45 13:15 0.24 10:30 0.47 9:16 0.59 9:15 0.22 10:45 0.3 10:30 0 286 286 2.080 0.184			0.135	2.98	232	223	9										9:45	0.44	8:15	0.51	0.27 9:00	0.3 13:00			25	
28 0.52 10:30 0.62 10:30 0.42 10:45 0.24 12:30 0.47 9:45 0 0.57 11:00 0.26 10:00 0.61 10:15 0 0 265 265 0.308 0.178 29 0.21 9:00 0.51 9:00 0.51 9:00 0.41 12:30 224 281 505 1.223 0.179			0.127	0.3	66	66	0	0.32 12:15					11:00	0.57	12:00	0.4			10:00	0.46	0.25 11:30	0.19 14:00	0.53 10:30	0.59 10:30	26	
29 0.21 9:00 0.51 9:00 0.39 11:45 0.26 12:00 0.42 12:15 0.28 12:00 0.54 11:15 0.15 0.41 12:30 224 281 505 1.223 0.179	< 1 Pantry, Lizard Creek Lodge	<1/<1 <1/<1	0.184	2.808	286	286	0	0.3 10:30			10:45	0.22	9:15	0.59					9:45	0.44	0.24 10:30	0.45 13:15	0.61 9:00	0.52 9:00	27	
			0.178			265	0		10:15	0.61	10:00	0.26	11:00	0.57							0.24 12:30	0.42 10:45	0.62 10:30	0.52 10:30	28	
			0.179	1.223	505	281	224	0.41 12:30					11:15	0.54			12:00	0.28	12:15	0.42	0.26 12:00	0.39 11:45	0.51 9:00	0.21 9:00	29	
30 0.17 7:00 0.43 7:00 0.37 8:00 0.21 7:45 0.53 6:30 0.51 7:15 0.55 7:30 0 0 0 0 0.339 0.181			0.181	0.339	0	0	0						7:30	0.55	7:15	0.51			6:30	0.53	0.21 7:45	0.37 8:00	0.43 7:00	0.17 7:00	30	
31 0.8 10:45 0.4 10:45 0.35 10:30 0.15 10:00 0.61 13:30 0.42 13:20 0.39 13:10 0.74 13:00 230 239 469 0.217 0.178			0.178	0.217	469	239	230		13:00	0.74	13:10	0.39	13:20	0.42					13:30	0.61	0.15 10:00	0.35 10:30	0.4 10:45	0.8 10:45	31	
Average 0.91 0.61 0.30 0.23 0.46 0.36 0.56 0.58 0.44 0.57 0.38 40.68 247.39 288.06 0.54 0.11			0.11	0.54	288.06	247.39	40.68	0.38		0.57		0.44		0.58		0.56		0.36		0.46	0.23	0.30	0.61	0.91	Average	
Median 0.92 0.62 0.29 0.2 0.47 0.36 0.56 0.59 0.455 0.585 0.4 31 247 270 0.141 0.088			0.088	0.141	270	247	31	0.4		0.585		0.455		0.59		0.56		0.36		0.47	0.2	0.29	0.62	0.92	Median	
Total 28.28 19.05 9.24 6.98 14.39 3.92 5.56 17.99 4.35 5.71 3.83 1261 7669 8930 16.826 3.367 >1 >1		>1 >1	3.387	16.826	8930	7669	1261	3.83		5.71		4.35		17.99		5.56		3.92		14.39	6.98	9.24	19.05	28.28	Total	

NOTE: For Independent Testing Column, if 'normal' must input < 1 / < 1 exactly in order for formula to work (spaces between everything)

Comments:

The reservoir #2 and new reservoir act as the end points in the system so residuals may be lower than 0.5mg/L.

-										Noven			эг керс	DIT IOI I	ernie /	Alpine F	resort	Junues	s corp.										
											orine Res	sidual (m	ng/L)										Wata	r Usage	(m^3)	Turbidi	v (NTU)	Independent Testing	
Day	Rese	ervoir 1	Reserv	/oir 2	New Res	servoir	River	Pump		VTP	Sh	ор	Tama	arack	Lift S	tation	Lizard	Creek	Snow	Creek	-	ntry				Turbiui	, , , , , , , , , , , , , , , , , , ,		
	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time		River Pp	Total	Spring	River	T. Coliform E. Col	
1		10:45	0.72		0.38			11:15		14:45	0.40	10:30				11:00							200	118	318				
2		12:45	0.68		0.30			12:00		14:30			0.66			12:30					0.71	10:45	214	0	214		0.117		
3		1 11:20	0.77		0.14			8:15	0.69				0.52	11:00		10:45				10:40			180	183	363	0.178		<1/<1 <1/<	Tamarak & Snowcreek
4		7 11:00	0.81		0.20			13:30		14:00						11:15	0.33	10:30	0.62	10:45			180	0	180		0.124		
5		3 9:00	0.71		0.14			14:00		14:00	0.19	14:30				14:00					0.59	14:15	18	172	190	1.485			
6		7 11:45	0.70		0.22			12:00		14:00			0.41	12:00	0.69								0	239	239	0.473	0.241		
7		12:30	0.55		0.34			13:00		15:45						16:30	0.55	11:20	0.59	16:10			357	346	703	0.299	0.199		
8		2 8:40	0.39		0.50			15:00		16:00	0.43	8:45			0.68								3		3	0.221	0.209		
9		3 12:45	0.48		0.34			15:30		14:00			0.61	12:30		13:45					0.58	13:30	347		347	0.181	0.199		
10		14:20	0.70		0.30			10:30	0.52		0.50	11:00				7:30							300		300	0.169	0.201		
11		6 11:40	0.83		0.31			16:00		11:20						14:00	0.71	13:50	0.72	13:40			220		220	0.159	0.2		
12		3 12:00	1.00		0.32			14:00	0.62		0.48	7:00				12:30					0.73	10:45	245		245	0.153		<1/<1 <1/<	WWTP & Maintenance
13		6 8:40	1.00 8		0.27			14:20		13:30					0.93								0		0	0.714			
14		3 11:30	0.91		0.57			11:00		16:45			0.72	12:00		10:45	0.87	11:15	0.86	11:00			372	98	470	0.356	0.21		
15		4 8:30	0.80		0.27			7:30		12:00	0.55	12:00				11:00							8		8	0.88	5		
16		1 11:00	0.68		0.32			11:20		16:00			0.69	14:00		14:30						14:45	260	6	266	0.25			
17		4 8:45	1.07 8		0.55			8:15	0.82						0.85		0.79				0.96	10:55	214	329	543			<1/<1 <1/<	Lizard & Pantry
18		7 15:00	0.78		0.50			13:00		16:00						15:45	0.82	16:00	0.40	16:15			190	101	291	0.176			
19		11:30	0.67		0.38			11:00		14:00	0.58	13:45				12:30					0.48	13:30	196	5	201	0.202			
20		4 12:30	0.47		0.49			14:00		13:00			0.70	12:00		12:45							241		241	0.173	0.194		
21		5 10:15	0.67		0.31			11:10		14:00						11:00	0.79	10:50	1.01	10:10			223	104	327	0.169	0.033		
22		2 14:30	0.41		0.33			16:00		15:45	0.36	11:00				11:20							broken		0	0.163			
23		0 10:00	0.58		0.29			15:45		15:00			0.46		0.56						0.40		broken		0	0.155			
24		3 15:15	0.66		0.23			13:00		16:00			0.51	10:30		16:30				10:15			broken		0	0.15		<1/<1 <1/<	Tamarak & Snowcreek
25		7 10:15	0.62		0.34			11:00		16:00					0.57		0.62	8:50	0.57	8:40			broken	3	3	0.165			
26		5 13:30	0.50		0.30			12:30		10:00	0.40	10:30				13:00					0.62		broken		0	0.196			
27		1 13:30	0.33		0.27			12:30		11:00			0.49	13:45		13:00							broken		0	0.184			
28		3 13:00	0.41		0.21			13:15	0.40							11:00	0.41	11:15	0.41	10:45			broken	8	8	0.777			
29		1 9:15	0.44		0.32			10:15	0.16		0.36	10:00			0.36								broken		0	0.42			
30	0.69	9 7:30	0.57	7:30	0.36	10:45	0.10	8:30	0.41	9:45			0.39	10:30	0.33	11:00					0.39	10:15	broken		0	0.292	0.116		
31																													
Average	0.79		0.66		0.33		0.16		0.57		0.43		0.56		0.64		0.65		0.62		0.64		188.95		189.33	0.33			
Median	0.695		0.675		0.315		0.17		0.56		0.415		0.52		0.59		0.71		0.605		0.605		214	101	207.5	0.196			
Total	23.55	5	19.91		#######		4.9		17.2		4.25		6.16		19.32		5.89		6.16		6.4		3968	1712		9.539		>1 >1	

November 2021 Water Report for Fernie Alpine Resort Utilities Corp

NOTE: For Independent Testing Column, if 'normal' must input < 1 / < 1 exactly in order for formula to work (spaces between everything)

Comments:

The reservoir #2 and new reservoir act as the end points in the system so residuals may be lower than 0.5mg/L.

-									Decem	ber 20	21 Wat	er Repo	ort for	Fernie	Alpine I	Resort	Utilities	s Corp.										_
											sidual (n			-								Wate	er Usage	(m^{3})	Turbidit		Independent Testing	
Day	Rese	rvoir 1	Reser	voir 2	New R	eservoir	River F	Pump	WWTP	Sh	юр	Tam	arack	Lift S	station	Lizard	l Creek		Creek	Par				(/		, , , ,		
	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂ Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	CL ₂	Time	Springs			Spring		T. Coliforn E. Coli	
1		10:00		10:00		10:30	0.10		0.37 10:00	0.23	10:15				17:00								181	181		0.723	<1/<1 <1/<1	Wastewater, Maintenance
2		11:00		11:00		10:30	0.28		0.32 10:00						10:45	0.48	10:00	0.29	10:15					0	0.266	0.733		
3		10:30		10:30		10:45	0.10		0.40 9:00	0.32	11:15				11:00					0.42	12:00		216	216		0.206		
4		12:15		12:15		12:45	0.44		0.38 9:00			0.62	12:30		16:00								9	9	0.188	0.217		
5		12:30		12:30		14:45	0.10		0.42 9:00						14:15	0.12	14:30	0.32	13:00				375			0.224		
6		13:15		13:15		9:10	0.11		0.02 9:00	0.13	9:20				9:30								176			0.161		
7		13:30		13:30		9:00	0.26		0.43 8:15			0.56	8:40		8:30								110			0.183		:
8		13:30		13:30		11:20	0.29		0.47 16:00						14:00		11:00			0.59	10:45		77				<1/<1 <1/<1	Pantry, Lizard
9		13:00		13:00		14:00	0.23		0.35 9:15						8:45	0.43	8:30	0.39	8:15				212	212		0.131		
10		13:00		13:00		13:30	0.21		0.41 8:30	0.32	9:30				10:00					0.71	9:45		0	0	0.150	0.128		
11		14:00		14:00		9:00	0.10		0.42 11:30			0.29	8:30		9:45								331			0.122		
12		14:00		14:00		13:00	0.39		0.00 17:00						9:30	0.42	10:20	0.36	10:00				288			0.136		
13		11:20		11:20		9:30	0.29		0.40 18:00	0.62	16:00				17:00								36	36		0.086		
14		10:30		10:30		13:00	0.21		0.19 8:10				12:30		9:00					0.38	9:10		280			0.122		
15		17:00		17:00		14:00	0.22		0.26 16:00			0.40	10:30		17:00				10:15				288			0.126	<1/<1 <1/<1	Tamarak, Snowcreek
16		17:00		17:00		15:15	0.39		0.52 9:00						11:30	0.53	10:00	0.71	10:15				62			0.1		
17		13:30		13:30		13:15	0.34		0.63 14:00	0.37	13:00				11:30					0.50	13:45		271			0.113		
18		14:30		14:30		14:45	0.19		0.52 9:00			0.55	14:45		11:30								276			0.124		
19		14:00		14:00		14:30		10:45	0.33 10:15						11:20	0.37	11:45	0.66	11:30				283	283		0.101		
20		11:00		11:00		9:45	0.23		0.15 16:00	0.12	14:45				13:30								354			0.117		
21		13:30		13:30		12:00	0.22		0.20 8:30			0.72	9:00		9:15					0.65	9:15		327			0.109		
22		15:00		15:00		15:15	0.11		0.72 11:00	0.35	12:00				11:00								391				<1/<1 <1/<1	Wastewater, Maintenance
23		13:30		13:30		13:00	0.20		0.33 11:30						12:15	0.31	12:00	0.72	11:45				353			0.114		
24		16:45		16:45		16:30	0.33		0.50 9:00	0.42	16:15				16:00					0.62	15:45		347			0.111		
25		14:15		14:15		14:00	0.10		0.42 12:00			0.31	13:00		12:45								332			0.081		
26		15:30		15:30		15:00	0.29		0.41 9:00						14:00	0.62	14:15	0.32	14:30				381		0.148	0.12		
27	0.80	14:00	0.75	14:00	0.25	14:30	0.29		0.52 16:30	0.36	11:00				15:30								372			0.111		
28							0.21		0.42 12:15						11:15								541			0.109		
29							0.19		0.45 15:00						14:15	0.33	10:39			0.36	10:19		363			0.095		
30							0.20		0.35 13:00						14:30								460				<1/<1 <1/<1	Pantry, Lizard
31		13:30		13:30		13:00	0.33	15:15	0.29 16:00						11:00								670			0.078		
Average	0.96		0.71		0.26		0.23		0.37	0.32		0.47		0.66		0.42		0.45		0.53		#DIV/0!	278.73			0.16		
Median	0.995		0.695		0.265		0.22		0.4	0.335		0.475		0.64		0.425		0.36		0.545		#DIV/0!	288			0.12		
Total	26.82		19.84		#######		7.15		11.6	3.24		3.77		20.43	5	4.2		4.09		4.23		#DIV/0!	8362	8362	4.667	5.109	>1 >1	
								-	<u> </u>																			-

December 2021 Water Report for Fernie Alpine Resort Utilities Corp

NOTE: For Independent Testing Column, if 'normal' must input < 1 / < 1 exactly in order for formula to work (spaces between everything)

Comments:

All items within the reporting period met interior health's current requirements for our water system.

The reservoir #2 and our new rerservoir continue to act as the end points in the system so residuals may be lower than 0.5mg/L.

																						202	0 Sı	ımm	nary																					
														Chlor	ine Re	sidual	(mg/L	.)															Water U	sage (ı	m³)					Τι	ırbidit	ty (NTI	U)		denende	nt Testi
Month	Rese	rvoir	1 CL ₂	Rese	ervoir 2	CL ₂	Rive	r Pum	p CL ₂	W	/WTP	CL ₂		Shop (L ₂	Tan	narack	CL ₂	Lift	Static	n CL ₂	Liza	rd Cree	ek CL ₂	Sno	w Cree	k CL ₂	Pa	antry CL	-2	1	Springs	Riv	er Pp		Тс	otal			Spring			River		acpenta	int resta
	Average	Mediar	Total	Average	Mediar	Total	Average	Mediar	Total	Average	Media	r Total	Avera	Media	n Total	Averag	Mediar	Total	Averag	Media	n Total	Avera	g Media	Total	Averag	Median	Total	Averag	Mediar	Total A	Average	Mediar To	al Averag Me	diar To	otal Ave	ragMe	dian T	otal Av	verag	Mediar	Total	Average	Mediar	Total	. Colifor	E. Coli
Jan	1.05	1.12	31.54	0.89	0.89	27.55	0.32	0.3	9.96	0.70	0.71	21.55	0.43	0.48	3.89	0.65	0.71	5.86	0.89	0.90	27.54	0.88	0.795	7	0.63	0.665	5.04	0.84	0.69	6.68	89.42	80 27	2 ##### 3	81 12	212 ##	### 5	12 1	4984	0.30	0.102	9.345	#####	0.201	6.853	>1	>1
Feb	1.00	1.03	27.98	0.76	0.715	21.41	0.31	0.28	8.74	0.53	0.525	14.91	0.54	0.425	4.30	0.53	0.57	4.73	0.59	0.50	16.62	0.58	0.58	5.76	0.68	0.63	4.78	0.44	0.37	4.43	54.57	52.50 ###	*** ****** **	###	### ##	### ##	### #	####	0.09	0.088	2.569	0.23	0.138	6.577	>1	>1
Mar	0.97	1	30.12	0.62	0.62	17.9	0.34	0.32	10.13	0.34	0.32	10.65	0.33	0.32	3.3	0.51	0.48	4.62	0.43	0.42	13.43	0.46	0.42	5.02	0.46	0.39	4.57	0.42	0.41	4.16	92.90	83 28	0 ##### 5	89.5 16	234 ##	### 6	30 1	9114	0.19	0.112	5.742	0.19	0.084	5.97	>1	>1
Apr	0.57	0.665	17.24	0.66	0.695	19.93	0.35	0.34	10.36	0.44	0.455	13.13	0.47	0.44	5.14	0.56	0.605	4.5	0.55	0.565	5 16.61	0.62	0.625	4.99	0.57	0.565	5.72	0.48	0.45	4.3	#####	280 80	0 ##### 1	97.5 63	335 ##	### 43	0.5 1·	4345	0.34	0.298	10.35	0.19	0.144	5.698	>1	>1
May	0.69	0.69	21.37	0.68	0.65	21.07	0.23	0.27	7.12	0.44	0.44	13.61	0.49	0.51	5.84	0.57	0.59	5.7	0.58	0.59	18.11	0.53	0.56	5.27	0.47	0.485	4.66	0.47	0.48	4.19	#####	410 117	72 ##### 2	3.5 17	68 ##	### 4	25 1	3540	0.18	0.149	5.72	0.16	0.152	4.899	>1	>1
June	0.91	0.915	27.25	0.81	0.8	24.15	0.29	0.32	8.81	0.46	0.48	13.82	0.48	0.465	3.85	0.55	0.61	6.01	0.60	0.645	5 18.14	0.59	0.56	5.31	0.54	0.475	5.35	0.51	0.45	5.11	#####	149 51	1 ##### 3	26.5 102	290 ##	### 50	4.5 1	5411	0.13	0.12	3.993	0.17	0.152	5.18	>1	>1
July	1.18	1.15	36.56	0.63	0.67	19.68	0.26	0.31	8.14	0.40	0.42	12.27	0.35	0.38	3.83	0.47	0.525	4.66	0.52	0.57	16.27	0.35	0.4	3.46	0.43	0.46	4.34	0.44	0.46	4	52.13	50 16	6 #####	17 223	346 ##	### 7	62 2	3962	0.11	0.109	3.368	0.14	0.12	4.486	ok	ok
Aug	0.49	0.469	15.09	0.49	0.469	15.09	0.24	0.22	7.55	0.38	0.38	11.84	0.32	0.285	3.24	0.48	0.48	4.35	0.48	0.48	14.86	0.49	0.425	5.91	0.30	0.32	3	0.37	0.405	3.74	25.55	28 79	2 ##### 5	21 172	287 ##	### 5	46 1	8079	0.42	0.148	12.91	0.15	0.119	4.522	>1	>1
Sept	1.17	1.135	35.1	0.61	0.56	18.15	0.39	0.39	11.76	0.46	0.42	13.79	0.36	0.34	3.23	0.54	0.535	5.36	0.56	0.485	5 16.87	0.46	0.44	4.63	0.50	0.48	5.48	0.44	0.44	3.97	20.27	17 60	8 ##### 33	28.5 10	774 ##	### 3	47 1	1382	0.24	0.144	7.283	0.13	0.118	4.005	>1	>1
Oct	0.91	0.92	28.28	0.61	0.62	19.05	0.30	0.29	9.24	0.46	0.47	14.39	0.36	0.36	3.92	0.56	0.56	5.56	0.58	0.59	17.99	0.44	0.455	4.35	0.57	0.585	5.71	0.38	0.4	3.83	40.68	31 12	1 ##### 2	47 76	69 ##	### 2	70 E	3930	0.54	0.141	16.83	0.11	0.088	3.387	>1	>1
Nov	0.79	0.695	23.55	0.66	0.675	19.91	0.16	0.17	4.90	0.57	0.56	17.2	0.43	0.415	4.25	0.56	0.52	6.16	0.64	0.59	19.32	0.65	0.71	5.89	0.62	0.605	6.16	0.64	0.605	6.4	#####	214 39	8 #####	01 17	'12 ##	### 20	07.5 5	5680	0.33	0.196	9.539	0.41	0.197	12.44	>1	>1
Dec	0.96	0.995	26.82	0.71	0.695	19.84	0.23	0.22	7.15	0.37	0.4	11.6	0.32	0.335	3.24	0.47	0.475	3.77	0.66	0.64	20.43	0.42	0.425	4.2	0.45	0.36	4.09	0.53	0.545	4.23	#####	###### ###	*# ##### 2	88 83	62 ##	### 2	88 8	3362	0.18	0.147	4.667	0.16	0.12	5.109	>1	>1
Annual	0.89	0.958	320.9	0.68	0.673	243.7	0.29	0.295	103.9	0.46	0.448	168.8	0.41	0.398	48.03	0.54	0.548	61.28	0.59	0.58	216.2	0.54	0.508	61.79	0.52	0.483	58.9	0.50	0.45	55.04	#####	****	## ##### 33	27.5 1E-	+05 ##	### 46	5.3 21	E+05	0.26	0.142	92.31	9.42	0.129	69.13	no	no

						Janua	ry 2021	. WWT	P Mont	thly Rep	oort							
Date	Weather	Temp. (°c)	Skier Visits	Total Influent Flow (m ³)	Daily Influent flow (m ³)	Total Effluent Flow	Effluent Flow (m ³)	TSS (mg/L)	Solids Bagged (m ³)	Wasting (m ³)	Bags Rem'd	EQ Tank % Full	SD Tank % Full	Total PO₄ (mg/L)	East RBC (I/d)	West RBC (I/d)	Alum/PAC (I/d)	BOD (mg/L)
				1571931		881000												
1-Jan	snow	-1		1572470	539	881593	593	1.20	5.6	4.5	11	23	51	1.09		59.76	129.90	
2-Jan	rain	3		1572891	421	882085	492	1.80	4.5	6.6	8	31	52	1.09	50.215	26.56	76.78	
3-Jan	cloud	1		1573391	500	882656	571	2.90	4.5	5.4	10	34	54	1.36	64.74	33.62	98.36	
4-Jan	cloud	-2		1573849	458	883191	535	4.10	4.3	5.9	12	26	50	0.50	64.74	29.88	94.62	3.4
5-Jan	cloud	0		1574167	318	883512	321	3.20	3.3	3.8	6	34	51	0.18	64.74	29.88	94.62	
6-Jan	snow	-1		1574553	386	883889	377	4.40	3.9	5.4	6	29	51	0.91	45.65	26.56	72.21	
7-Jan	sun	-3		1574943	390	884312	423	0.30	4	6.9	10	25	48	0.80	45.65	26.56	72.21	
8-Jan	cloud	-4		1575278	335	884669	357	5.10	6.4	9.2	13	26	52	0.37	45.65	26.56	72.21	
9-Jan	cloud	-4		1575559	281	885005	336	1.50	3.3	3.9	4	32	60	0.39	41.5	23.24	64.74]
10-Jan	cloud	-3		1575887	328	885382	377	1.40	4.7	5	7	39	62	1.94	45.65	19.92	65.57	
11-Jan	cloud	0		1576278	391	885798	416	3.00	5.7	5	10	24	67	0.88	49.8	29.88	79.68	<2.0
12-Jan	snow	0		1576554	276	886083	285	2.00	5.2		12	22	70	0.65	49.8	29.88	79.68	
13-Jan	rain	3		1576859	305	886463	380	0.70	3.4		9	56	57	0.61	49.8	29.88	79.68	
14-Jan	sun	-4		1577465	606	887145	682	3.40	6.1	3.8	13	45	52	0.25	49.8	29.88	79.68	
15-Jan	sun	-2		1577964	499	887680	535	2.10	5.1	7.9	12	22	55	0.48	41.085	23.24	64.33	
16-Jan	sun	-8		1578229	265	888009	329	0.70	3	3.4	6	23	56	0.36	41.085	23.24	64.33	
17-Jan	cloud	-6		1578606	377	888449	440	0.60	4	2.2	9	23	58	0.49	41.085	23.24	64.33	
18-Jan	sun	-7		1578969	363	888867	418	1.00	3.3	7.8	7	11	57	0.68	41.085	23.24	64.33	<2.0
19-Jan	cloud	-6		1579225	256	889136	269	1.90	5.2		13	8	56	0.65	41.085	23.24	64.33	
20-Jan	sun	-3		1579447	222	889432	296	3.00	6	6.1	11	6	55	0.40	41.085	23.24	64.33	
21-Jan	sun	-12		1579671	224	889706	274	0.90	3.7	4.7	5	11	56	0.08	41.085	23.24	64.33	
22-Jan	sun	-16		1579873	202	889953	247	1.30				16	57	0.69	23.24	14.94	38.18]
23-Jan	cloud	-14		1580103	230	890202	249	0.20	4.1		8	18	59	1.31	23.24	14.94	38.18	1
24-Jan	cloud	-10		1580460	357	890592	390	0.10	3.4	5.3	8	17	57	2.63	23.24	14.94	38.18	1
25-Jan	cloud	-10		1580729	269	890933	341	4.20	5	5.4	9	10	57	1.62	29.88	20.34	50.22	1
26-Jan	cloud	-10		1580892	163	891144	211	3.20	5.2	6	10	11	59	1.22	29.88	20.34	50.22	1
27-Jan	cloud	-9		1581084	192	891374	230	0.50	5.7	4.4	10	14	60	0.66	49.8	23.24	73.04	1
28-Jan	snow	-4		1581299	215	891630	256	2.80	3.5	5.5	8	20	60	0.26	49.8	23.24	73.04	1
29-Jan	snow	-4		1581476	177	891844	214	1.20	3		3	25	61	0.21	49.8	23.24	73.04	1
30-Jan	snow	-1		1581784	308	892215	371	0.10	4.5	2.6	10	34	61	0.54	49.8	23.24	73.04	1
31-Jan	cloud	0		1582146	362	892624	409	0	4.3	6.6	11	29	61	1.33	49.8	23.24	73.04	1
Average	N/A	-4.42			329.52		374.97	1.90	4.46	5.33	9.03	24.00	56.84	0.79	45.29	25.37	70.66]
Median	N/A	-4.00			318.00		371.00	1.50	4.40	5.40	9.50	23.00	57.00	0.65	45.65	23.24	72.21	
Total	N/A	N/A	0		10215		11624	N/A	133.90	133.30	271	N/A	N/A	N/A	1403.95	786.43	2190.37	

						Februa	ary 202	1 WW	rp Mon	thly Re	port							
Date	Weather	Temp. (°c)	Skier Visits	Total Influent Flow (m ³)	Daily Influent flow (m ³)	Total Effluent Flow	Effluent Flow (m ³)	TSS (mg/L)	Solids Bagged (m ³)	Wasting (m ³)	Bags Rem'd	EQ Tank % Full	SD Tank % Full	Total PO₄ (mg/L)	East RBC (I/d)	West RBC (I/d)	Alum/PAC (I/d)	BOI (mg/l
				1582146		892624				_								
1-Feb	sun	1		1582524	378	893048	424	0.296	5.4		16	23	64	1.07	49.8	33.20	83.00	
2-Feb	cloud	3		1582794	270	893335	287	0.234	3.2	5	9	18	54	0.86	49.8	33.20	83.00	
3-Feb	snow	-1		1583052	258	893508	173	0.193	3.4	9.7	8	20	41	0.38	59.345	23.24	82.59	
4-Feb	sun	-3		1583330	278	893801	293	0.184	3.1	4.1	9	18	44	0.34	59.345	20.34	79.68	
5-Feb	sun	-3		1583579	249	894088	287	0.203	4.1	6.3	9	18	46	0.36	59.345	20.34	79.68	
6-Feb	snow	-13		1583844	265	894395	307	0.235	4.2	4.6	15	19	47	0.35	59.345	20.34	79.68	
7-Feb	cloud	-17		1584236	392	894830	435	0.389	3.8	7.8	9	19	70	0.95	59.345	20.34	79.68	
8-Feb	cloud	-15		1584577	341	895217	387	0.445	4.4	10.6	11	4	51	0.94	59.345	20.34	79.68	
9-Feb	sun	-25		1584775	198	895475	258	0.300	4.4		12	0	53	0.62	59.345	20.34	79.68	
10-Feb	sun	-28		1584806	31	895542	67	0.270	3	9.5	5	40	52	0.34	26.56	10.38	36.94	
11-Feb	sun	-25		1584995	189	895752	210	0.271	3.2		3	54	42	0.87	26.56	10.38	36.94	
12-Feb	sun	-27		1585288	293	896061	309	0.239	4.1	6.8	9	48	62	0.77	41.5	19.92	61.42	
13-Feb	sun	-20		1585615	327	896433	372	0.256	3		6	53	79	1.36	41.5	19.92	61.42	
14-Feb	sun	-18		1586100	485	896978	545	1.150	2	11.8		51	77	1.86	59.76	33.20	92.96	
15-Feb	cloud	-16		1586644	544	897557	579	0.389	3.2		5	45	70	0.78	59.76	33.20	92.96	
16-Feb	cloud	-10		1587174	530	898136	579	0.438	2.7		5	32	74	0.85	59.76	26.56	86.32	
17-Feb	cloud	-8		1587532	358	898541	405	0.212	3.1	3.2	8	42	63	0.56	59.76	26.56	86.32	
18-Feb	cloud	-9		1587947	415	898992	451	0.245	4.5	2.4	9	51	72	0.86	59.76	26.56	86.32	
19-Feb	cloud	-4		1588394	447	899488	496	0.250	3.5		6	46	65	0.89	59.76	26.56	86.32	
20-Feb	cloud	-2		1588824	430	899982	494	0.195	3.1		5	36	81	1.11	59.76	26.56	86.32	
21-Feb	snow	0		1589259	435	900447	465	0.220	3.3		4	33	71	0.83	69.72	33.20	102.92	
22-Feb	cloud	2		1589719	460	900949	502	0.281	1	6.6		30	66	0.61	39.84	33.20	73.04	<
23-Feb	cloud	-2		1590087	368	901350	401	0.705	3.4	6.6	12	28	70	0.31	70.135	33.20	103.34	
24-Feb	sun	-7		1590477	390	901763	413	0.935	5.2	7.1	12	25	62	0.61	49.8	19.92	69.72	
25-Feb	snow	-3		1590852	375	902193	430	0.555	4.4	12.6	9	21	62	0.47	49.8	33.20	83.00	
26-Feb	cloud	-2		1591211	359	902568	375	0.449	3.8	9.5	10	34	67	0.42	49.8	26.56	76.36	
27-Feb	cloud	-3		1591558	347	902951	383	0.541	2.7	0.2	1	43	72	0.61	49.8	26.56	76.36	
28-Feb	cloud	2		1592040	482	903464	513	0.950	5.2	10.9	8	47	76	1.22	49.8	26.56	76.36	
																	0.00	
Average	N/A	-9.04			353.36		387.14	0.394	3.59	7.12	8.27	32.07	62.61	0.76	53.51	25.14	75.93	
Median	N/A	-5.50			363.50		403.00	0.276	3.40	6.80	9.00	32.50	64.50	0.78	59.35	26.56	79.68	
Total	N/A	N/A	0		9894		10840	N/A	100.40	135.30	215	N/A	N/A	N/A	1498.15	703.84	2201.99	

						Marc	h 2021	WWT	P Mont	hly Rep	ort							
Date	Weather	Temp. (°c)	Skier Visits	Total Influent Flow (m ³)	Daily Influent flow (m ³)	Total Effluent Flow	Effluent Flow (m ³)	TSS (mg/L)	Solids Bagged (m ³)	Wasting (m ³)	Bags Rem'd	EQ Tank % Full	SD Tank % Full	Total PO₄ (mg/L)	East RBC (I/d)	West RBC (I/d)	Alum/PAC (I/d)	B (m
			•	1592040		903464												1
1-Mar	cloud	2		1592568	528	904019	555	1.45	4.3	13.5	11	25	79	1.31	49.80	26.56	76.36	
2-Mar	cloud	2		1592901	333	904392	373	0.92	4.2	0.1	12	30	81	0.48	49.80	26.56	76.36	
3-Mar	sun	6		1593230	329	904753	361	0.375	4.7		11	38	79	1.31	49.80	26.56	76.36	
4-Mar	sun	-2		1593652	422	905236	483	0.318	5.3	3.9	10	39	72	0.46	49.80	26.56	76.36	
5-Mar	sun	2		1594113	461	905740	504	0.36	5	10.2	12	31	74	0.73	49.80	26.56	76.36	
6-Mar	rain	3		1594562	449	906244	504	0.344	3.8		11	38	75	0.66	49.80	26.56	76.36	
7-Mar	cloud	0		1595005	443	906742	498	0.49	4.6		12	41	70	0.91	49.80	26.56	76.36	
8-Mar	sun	-2		1595503	498	907287	545	0.81	4.3		10	34	70	1.03	49.80	26.56	76.36	
9-Mar	sun	-4		1595873	370	907715	428	0.403	3.7		2	33	74	0.27	59.76	37.35	97.11	
10-Mar	sun	0		1596275	402	908180	465	0.321	5.7		10	26	74	0.15	59.76	37.35	97.11	
11-Mar	sun	-3		1596641	366	908603	423	0.315	2.3			29	73	0.62	41.50	26.56	68.06	
12-Mar	sun	-5		1596946	305	908942	339	0.307	3.6		12	38	81	0.7	41.50	26.56	68.06	
13-Mar	sun	-2		1597402	456	909471	529	0.698	4.2		12	48	78	0.92	41.50	26.56	68.06	
14-Mar	sun	0		1597895	493	910025	554	0.986	5.9		12	43	67	0.95	50.22	33.62	83.83	
15-Mar	cloud	2		1598443	548	910632	607	1.54	5.9		12	29	68	0.95	50.22	33.62	83.83	
16-Mar	sun	-8		1598865	422	911129	497	0.501	6		12	22	68	0.72	50.22	33.62	83.83	
17-Mar	sun	-2		1599221	356	911543	414	0.322	4.8		12	36	68	0.31	59.76	26.56	86.32	
18-Mar	cloud	-2		1599623	402	911998	455	0.322	3.8		10	37	69	0.26	59.76	26.56	86.32	
19-Mar	cloud	2		1600124	501	912565	567	0.339	2.8		17	24	69	0.48	59.76	26.56	86.32	
20-Mar	snow	0		1600637	513	913149	584	0.312	5.1			19	70	0.36	59.76	26.56	86.32	
21-Mar	cloud	0		1601192	555	913792	643	0.29	5		12	13	65	0.35	64.74	37.35	102.09	
22-Mar	snow	0		1601638	446	914297	505	0.297	5.7			12	65	0.01	64.74	37.35	102.09	
23-Mar	sun	0		1601986	348	914707	410	0.297	5.1		12	17	64	0.28	59.76	23.24	83.00	
24-Mar	cloud	0		1602342	356	915141	434	0.33	4		12	19	63	0.47	41.50	23.24	64.74	
25-Mar	cloud	0		1602721	379	915577	436	0.308	5.6	8.8	12	21	60	0.74	41.50	23.24	64.74	1
26-Mar	sun	-4		1603134	413	916048	471	0.294	2.9	5.9	6	24	65	0.57	41.50	23.24	64.74	
27-Mar	sun	3		1603506	372	916474	426	0.25	5.5	7.2	12	21	68	0.76	41.50	23.24	64.74	
28-Mar	sun	4		1604042	536	917095	621	0.357	5.6	6.4	12	15	70	1.25	50.22	29.88	80.10	
29-Mar	snow	-5		1604586	544	917739	644	0.39	3.8		12	29	72	1.23	50.22	29.88	80.10	1
30-Mar	sun	-5		1605166	580	918386	647	0.254	5.8	10.6	9	18	73	0.49	59.76	33.62	93.38	1
31-Mar	sun	2		1605676	510	918974	588	0.272	4.4		12	23	76	0.78	41.50	26.56	68.06	
Average	N/A	-0.52			439.87		500.32	0.48	4.63	7.40	11.11	28.13	70.97	0.66	51.26	28.54	79.80	1
Median	N/A	0.00			443.00		498.00	0.33	4.70	7.20	12.00	29.00	70.00	0.66	49.80	26.56	76.36	
Total	N/A	N/A	0		13636		15510	N/A	143.40	66.60	311	N/A	N/A	N/A	1589.04	884.78	2473.82	

						Apri	2021 \	NWTP	Month	ly Repo	ort							
Date	Weather	Temp. (°c)	Skier Visits	Total Influent Flow (m ³)	Daily Influent flow (m ³)	Total Effluent Flow	Effluent Flow (m ³)	TSS (mg/L)	Solids Bagged (m ³)	Wasting (m ³)	Bags Rem'd	EQ Tank % Full	SD Tank % Full	Total PO₄ (mg/L)	-401	West RBC (I/d)	Alum/PAC (I/d)	BOD (mg/L)
				1605676		918974												
1-Apr	sun	4		1606187	511	919572	598	0.275	3.4		9	26	71	0.76	54.78	26.56	81.34	
2-Apr	sun	3		1606685	498	920147	575	0.262	4.2	8.9	11	28	74	0.82	54.78	26.56	81.34	
3-Apr	sun	5		1607144	459	920670	523	0.294	4.9		12	31	79	1.1	54.78	26.56	81.34	
4-Apr	rain	5		1607707	563	921320	650	0.394	5.5		12	31	74	1.5	54.78	26.56	117.03	
5-Apr	cloud	0		1608341	634	922045	725	0.262	5.6	9.2	12	29	75	0.42	75.53	41.5	81.34	<2.0
6-Apr	sun	6		1608786	445	922551	506	0.271	4.2		12	18	76	0.63	54.78	26.56	61.84	
7-Apr	sun	6		1609137	351	922958	407	0.404	5.8		12	22	75	0.75	41.5	20.335	68.89	
8-Apr	snow	-2		1609542	405	923431	473	0.427	5		12	27	75	0.53	45.65	23.24	68.89	
9-Apr	sun	3		1609965	423	923923	492	0.387				27	75	0.4	45.65	23.24	68.89	
10-Apr	snow	2		1610320	355	924325	402	0.275	6.8	9.8	12	20	77	0.51	45.65	23.24	68.89	
11-Apr	cloud	0		1610758	438	924785	460	0.27	5	9.5	12	21	75	0.64	45.65	23.24	68.89	
12-Apr	cloud	0		1611075	317	925194	409	0.238	4.9		12	20	82	0.59	45.65	23.24	68.89	<2.0
13-Apr	sun	5		1611409	334	925575	381	0.275	4	0.3	12	15	73	0.35	45.65	23.24	42.33	
14-Apr	sun	6		1611677	268	925887	312	0.309	4.6	0.2	12	18	70	0.44	29.88	12.45	44.41	
15-Apr	sun	3		1611948	271	926214	327	0.353	4.5		10	24	69	0.58	29.88	14.525	44.41	
16-Apr	sun	9		1612250	302	926567	353	0.34	3		9	29	68	0.54	29.88	14.525	44.41	
17-Apr	sun	18		1612507	257	926873	306	0.287	5.2	0.6	11	27	69	0.35	29.88	14.525	44.41	
18-Apr	sun	5		1612814	307	927230	357	0.289	5		10	25	69	0.22	29.88	14.525	44.41	
19-Apr	sun	0		1613107	293	927570	340	0.243	4.3		12	24	68	0.12	29.88	14.525	25.73	<2.0
20-Apr	sun	0		1613408	301	927903	333	0.263	5.1		12	42	68	0.48	17.43	8.3	25.73	
21-Apr	sun	3		1613725	317	928276	373	0.258	4.5		12	24	67	0.59	17.43	8.3	25.73	
22-Apr	rain	4		1613998	273	928589	313	0.257	4.4		12	22	67	0.48	17.43	8.3	25.73	
23-Apr	cloud	0		1614266	268	928898	309	0.266	4.9		12	23	66	0.3	17.43	8.3	25.73	
24-Apr	rain	0		1614555	289	929235	337	0.25	4.5		11	21	66	0.57	17.43	8.3	25.73	
25-Apr	snow	0		1614844	289	929560	325	0.38	2.3			25	70	0.06	17.43	8.3	25.73	
26-Apr	cloud	4		1615126	282	929895	335	0.406	3.9		10	27	70	1.12	17.43	8.3	47.31	
27-Apr	sun	0		1615430	304	930250	355	0.29	3.5		10	36	62	0.31	29.88	17.43	47.31	
28-Apr	sun	8		1615751	321	930608	358	0.29	4	9.5	12	30	52	0.33	29.88	17.43	47.31	<2.0
29-Apr	cloud	7		1616075	324	930964	356	0.265	3.5	3	6	23	55	0.31	29.88	17.43	47.31	
30-Apr	cloud	8		1616353	278	931274	310	0.265	3.7	4.4	10	20	61	0.57	29.88	17.43	0.00	
																	0.00	
Average	N/A	3.73			355.90		410.00	0.20	4.49	5.54	11.11	25.17	69.93	0.55	36.19	18.23	50.04	
Median	N/A	3.50			317.00		357.50	0.28	4.50	6.65	12.00	24.50	70.00	0.52	29.88	17.43	47.31	
Total	N/A	N/A	0		10677		12300	N/A	130.20	55.40	311	N/A	N/A	N/A	1085.64	546.97	1551.27	

						May	2021 \	NWTP	Month	ly Repo	ort						
Date	Weather	Temp. (°c)	Skier Visits	Total Influent Flow (m ³)	Daily Influent flow (m ³)	Total Effluent Flow	Effluent Flow (m ³)	TSS (mg/L)	Solids Bagged (m ³)	Wasting (m ³)	Bags Rem'd	EQ Tank % Full	SD Tank % Full	Total PO₄ (mg/L)	East RBC (I/d)	West RBC (I/d)	Alum/PAC (I/d)
				1616353		931274											
1-May	cloud	6		1616593	240	931541	267	0.315	4.3	3.8	12	29	58	0.31	26.56	14.94	41.50
2-May	sun	5		1616931	338	931919	378	0.409	3.4	5.6	4	20	59	0.57	26.56	14.94	41.50
3-May	sun	6		1617205	274	932229	310	0.296	4.7	2.7	12	18	61	0.08	33.20	19.92	53.12
4-May	cloud	4		1617485	280	932542	313	0.25	4.9		12	17	62	0.29	33.20	19.92	53.12
5-May	sun	6		1617742	257	932828	286	0.275	3.6	2.8	12	21	61	0.24	33.20	19.92	53.12
6-May	sun	6		1618010	268	933134	306	0.25	4.6	3.9	12	24	52	0.17	33.20	19.92	53.12
7-May	cloud	9		1618311	301	933474	340	0.243	0.8			22	61	0.23	26.56	14.94	41.50
8-May	cloud	4		1618593	282	933788	314	0.282	3.5		12	15	54	0.33	26.56	10.38	36.94
9-May	rain	5		1618880	287	934063	275	0.365	4.5		12	4	62	0.63	20.34	6.64	26.98
10-May	sun	6		1619050	170	934299	236	0.3	4.7	2.1	12	13	49	0.44	19.92	12.45	32.37
11-May	rain	4		1619205	155	934502	203	0.575	0.8			26	48	1.39	19.92	17.43	37.35
12-May	cloud	3		1619435	230	934834	332	0.405	3.7		12	33	45	0.9	49.80		49.80
13-May	sun	6		1619729	294	935160	326	0.662	4.3	0.2	12	23	46	0.6	49.80		49.80
14-May	sun	14		1620044	315	935512	352	0.697	4.7	8	12	13	41	0.59	49.80		49.80
15-May	sun	8		1620306	262	935788	276	0.807	3.5		12	9	59	0.58	49.80		49.80
16-May	sun	20		1620582	276	936095	307	0.524	0.8	7.2		10	44	0.45	49.80		49.80
17-May	sun	10		1620748	166	936291	196	0.37	4.5	3	12	19	47	0.36	49.80		49.80
18-May	cloud	10		1620945	197	936531	240	0.4	4.9	2	12	28	46	0.32	49.80		49.80
19-May	sun	0		1621205	260	936827	296	0.875	4.8		12	24	45	0.62	41.50		41.50
20-May	cloud	6		1621481	276	937134	307	0.929	2.5	4.3	12	17	43	0.65	41.50		41.50
21-May	cloud	4		1621711	230	937316	182	0.396	2.2			9	42	1.36	41.50		41.50
22-May	cloud	5		1621904	193	937616	300	0.308	3.7		12	15	41	0.88	59.76		59.76
23-May	cloud	10		1622111	207	937858	242	0.375	5.3	1.2	12	20	53	0.37	50.22		50.22
24-May	rain	5		1622409	298	938165	307	0.315	3.8	3.5	12	19	51	0.32	50.22		50.22
25-May	rain	6		1622696	287	938454	289	0.254	2.1	5.8		13	51	0.26	50.22		50.22
26-May	cloud	6		1622940	244	938795	341	0.275	4.8	9.4	12	33	48	0.22	50.22		50.22
27-May	sun	7		1623035	95	939128	333	0.28	3.8	6.5	12	31	53	0.22	41.50		41.50
28-May	rain	3		1623402	367	939541	413	0.326	1	2.6		24	59	0.31	41.50		41.50
29-May	sun	7		1623711	309	939892	351	0.283	3.3	5.8	12	24	61	0.11	41.50		41.50
30-May	sun	10		1623992	281	940216	324	0.298	2.7	4.9		24	65	0.23	26.56		26.56
31-May	sun	10		1624272	280	940509	293	0.279	4	4.5	12			0.31	26.56		26.56
Average	N/A	6.81			255.45		297.90	0.41	3.55	4.28	11.67	19.90	52.23	0.46	39.05	15.58	44.58
Median	N/A	6.00			274.00		307.00	0.32	3.80	3.90	12.00	20.00	51.50	0.33	41.50	14.94	49.80
Total	N/A	N/A	0		7919		9235	N/A	110.20	89.80	280	N/A	N/A	N/A	1210.56	171.40	1381.95

						June	2021	WWTP	Month	ly Repo	ort						
Date	Weather	Temp. (°c)	Skier Visits	Total Influent Flow (m ³)	Daily Influent flow (m ³)	Total Effluent Flow	Effluent Flow (m ³)	TSS (mg/L)	Solids Bagged (m ³)	Wasting (m ³)	Bags Rem'd	EQ Tank % Full	SD Tank % Full	Total PO₄ (mg/L)	East RBC (I/d)	West RBC (I/d)	Alum/PAC (I/d)
				1624272		940509											
1-Jun	sun	10		1624521	249	940809	300	0.4	0.6	8.4		26	75	0.25	26.56		26.56
2-Jun	sun	20		1624763	242	941119	310	0.3	3.4		12	24	70	0.17	24.90		24.90
3-Jun	sun	21		1625087	324	941454	335	0.241	0.9			22	66	0.04	24.90		24.90
4-Jun	sun	12		1625371	284	941802	348	0.284	3.3	4.2	12	18	53	0.24	23.24		23.24
5-Jun	cloud	17		1625670	299	942100	298	0.265	3.2	6.4	12	16	54	0.25	23.24		23.24
6-Jun	cloud	10		1625951	281	942458	358	0.323	4.6		12	24	65	0.49	23.24		23.24
7-Jun	cloud	6		1626234	283	942786	328	0.286	2.7		12	23	54	0.43	26.56		26.56
8-Jun	cloud	6		1626533	299	943079	293	0.269	3.1		12	27	43	0.38	26.56		26.56
9-Jun	rain	10		1626847	314	943358	279	0.307	3.9		12	23	42	0.40	26.56		26.56
10-Jun	cloud	11		1627156	309	943709	351	0.471	0.9			22	69	0.79	26.56		26.56
11-Jun	sun	12		1627419	263	944024	315	0.274	3.2		12	20	40	0.36	26.56		26.56
12-Jun	rain	11		1627689	270	944329	305	0.261	2.9		12	19	40	0.43	26.56		26.56
13-Jun	sun	15		1627953	264	944639	310	0.275	0.9	8.1		21	37	0.47	26.56		26.56
14-Jun	sun	20		1628227	274	944922	283	0.25	3.5	5.9	12	20	68	0.38	26.56		26.56
15-Jun	cloud	13		1628495	268	945239	317	0.45	4.5	6.9	12	14	55	0.59	26.56		26.56
16-Jun	sun	15		1628762	267	945539	300	0.375	0.8	11.1		16	42	0.76	26.56		26.56
17-Jun	sun	16		1628974	212	945783	244	0.35	2.8		12	22	52	0.46	26.56		26.56
18-Jun	sun	13		1629215	241	946048	265	0.388	3.1	12.2	12	25	74	1.24	26.56		26.56
19-Jun	cloud	16		1629537	322	946402	354	0.402	2.7	6	12	13	49	0.49	26.56		26.56
20-Jun	sun	15		1629774	237	946669	267	0.372	3.7	2.7	12	21	50	0.57	26.56		26.56
21-Jun	sun	8		1630037	263	946965	296	0.36				24	39	0.63	26.56		26.56
22-Jun	sun	10		1630318	281	947253	288	0.268				20	39	0.79	26.56		26.56
23-Jun	sun	15		1630574	256	947525	272	0.288	1			23	39	1.48	26.56		26.56
24-Jun	sun	10		1630821	247	947853	328	0.281				24	39	1.01	33.20		33.20
25-Jun	sun	19		1631117	296	948140	287	0.25				24	39	1.05	33.20		33.20
26-Jun	sun	20		1631409	292	948497	357	0.284				26	39	0.92	33.20		33.20
27-Jun	sun	22		1631728	319	948825	328	0.374				28	39	1.66	33.20		33.20
28-Jun	sun	25		1632029	301	949182	357	0.395	3.6	2.3	12	23	38	0.60	49.80		49.80
29-Jun	sun	20		1632335	306	949479	297	0.35	0.4	9.3		20	40	0.66	49.80		49.80
30-Jun	sun	30		1632691	356	949847	368	0.275	3.8		12	15	43	1.06	49.80		49.80
																	0.00
Average	N/A	14.93			280.63		311.27	0.32	2.65	6.96	12.00	21.43	49.73	0.64	29.33	#DIV/0!	28.38
Median	N/A	15.00			281.00		307.50	0.29	3.10	6.65	12.00	22.00	43.00	0.53	26.56	#NUM!	26.56
Total	N/A	N/A	0		8419		9338	N/A	63.50	83.50	204	N/A	N/A	N/A	879.80	0.00	879.80

						July	2021 V	/WTP	Monthl	y Repo	rt							
	Weather	Temp. (°c)	Skier Visits	Total Influent Flow (m ³)	Daily Influent flow (m ³)	Total Effluent Flow	Effluent Flow (m ³)	TSS (mg/L)	Solids Bagged (m ³)	Wasting (m ³)	Bags Rem'd	EQ Tank % Full	SD Tank % Full	Total PO₄ (mg/L)	East RBC (I/d)	West RBC (I/d)	Alum/PAC (I/d)	B((m
				1632691		949847												
1-Jul	sun	30		1632977	286	950223	376	0.25	0.9	9.7		12	43	0.9	49.80		49.80	
2-Jul	sun	30		1633307	330	950544	321	0.215	3.4	1.3	12	24	47	0.48	59.76		59.76	
3-Jul	sun	30		1633656	349	950896	352	0.27	4.5	2.1	12	36	52	1.02	59.76		59.76	
4-Jul	sun	25		1634040	384	951366	470	0.28	5.3	3.9	12	45	55	0.95	64.74		64.74	
5-Jul	sun	17		1634377	337	951704	338	0.257	1.9			46	55	0.75	75.53		75.53	
6-Jul	sun	20		1634733	356	952075	371	0.315	4.5	7.9	12	44	59	0.42	75.53		75.53	
7-Jul	sun	16		1635062	329	952387	312	0.346	6.1	0.8	12	54	64	0.49	75.53		75.53	
8-Jul	cloud	14		1635438	376	952788	401	0.382	5.4	3.7	11	55	63	0.48	75.53		75.53	
9-Jul	sun	13		1635905	467	953240	452	0.367	5	6.7	6	42	63	0.73	75.53		75.53	1
10-Jul	sun	16		1636330	425	953754	514	0.282	1.6	13.1	11	40	63	0.66	75.53		75.53	
11-Jul	sun	20		1636736	406	954175	421	0.315				47	69	0.69	75.53		75.53	
12-Jul	sun	20		1637100	364	954608	433	0.361	2.3			51	70	0.86	75.53		75.53	
13-Jul	sun	22		1637579	479	955078	470	0.501	1.5	8.1		44	49	0.63	93.38		93.38	
14-Jul	sun	14		1638060	481	955545	467	0.574	0.9	0.6		28	54	0.34	93.38		93.38	<2.0
15-Jul	sun	15		1638419	359	955965	420	0.305		1.5		37	55	0.39	81.34		81.34	
16-Jul	sun	18		1638894	475	956448	483	0.376				33	59	1.12	81.34		81.34	
17-Jul	sun	25		1639331	437	956990	542	0.336		2.8	12	34	62	0.41	93.38		93.38	
18-Jul	sun	30		1639837	506	957519	529	0.373		7.5		19	65	0.4	93.38		93.38	
19-Jul	sun	15		1640289	452	957955	436	0.33	2.7	0.8		22	70	0.45	93.38		93.38	
20-Jul	sun	20		1640665	376	958321	366	0.3	4	3	12	23	70	0.41	93.38		93.38	
21-Jul	cloud	18		1641041	376	958812	491	0.302			12	27	48	0.47	93.38		93.38	
22-Jul	sun	20		1641417	376	959172	360	0.24			12	22	53	0.34	93.38		93.38	
23-Jul	sun	9		1641796	379	959548	376	0.238			12	23	53	0.34	93.38		93.38	1
24-Jul	sun	13		1642173	377	960054	506	0.31			12	23	51	0.53	93.38		93.38	
25-Jul	sun	18		1642549	376	960420	366	0.24			12	26	49	0.36	93.38		93.38	
26-Jul	sun	20		1642934	385	960884	464	0.242			12	31	49	0.49	93.38		93.38	
27-Jul	sun	16		1643308	374	961247	363	0.3			12	34	50	0.37	93.38		93.38	1
28-Jul	sun	20		1643777	469	961692	445	0.6			12	33	56	0.47	93.38		93.38	
29-Jul	sun	14		1644175	398	962168	476	0.699				33	43	0.41	93.38		93.38	
30-Jul	sun	18		1644628	453	962660	492	0.569			12	30	45	0.46	93.38		93.38	1
31-Jul	sun	16		1645023	395	963188	528	0.439			12	28	43	0.44	93.38		93.38	
Average	N/A	19.10			397.81		430.35	0.35	3.33	4.59	11.60	33.74	55.71	0.56	83.50	#DIV/0!	83.50	1
Median	N/A	18.00			379.00		436.00	0.32	3.40	3.35	12.00	33.00	55.00	0.47	93.38	#NUM!	93.38	
Total	N/A	N/A	0		12332		13341	N/A	50.00	73.50	232	N/A	N/A	N/A	2588.36	0.00	2588.36	1

						Augu	st 2021	WWT	P Mont	hly Rep	ort						
Date	Weather	Temp. (°c)	Skier Visits	Total Influent Flow (m ³)	Daily Influent flow (m ³)	Total Effluent Flow	Effluent Flow (m ³)	TSS (mg/L)	Solids Bagged (m ³)	Wasting (m ³)	Bags Rem'd	EQ Tank % Full	SD Tank % Full	Total PO₄ (mg/L)	East RBC (I/d)	West RBC (I/d)	Alum/PAC (I/d)
				1645023		963188											
1-Aug	smoke	17		1645538	515	963678	490	0.384	4.4	6.5	12	30	44	0.54	93.38		93.38
2-Aug	rain	18		1646065	527	964197	519	0.27	5.1		12	31	50	0.66	93.38		93.38
3-Aug	cloud	19		1646525	460	964681	484	0.281	4.6	7.6	12	29	48	0.55	106.24		106.24
4-Aug	smoke	17		1646952	427	965211	530	0.223	1.5	7.2		33	54	0.75	106.24		106.24
5-Aug	sun	10		1647388	436	965638	427	0.245	4.9	3	12	33	56	0.22	106.24		106.24
6-Aug	smoke	16		1647859	471	966104	466	0.235	4.1		12	14	44	0.34	106.24		106.24
7-Aug	cloud	18		1648162	303	966505	401	0.235	4.9	5.6	12	13	43	0.59	106.24		106.24
8-Aug	cloud	12		1648548	386	966870	365	0.27	5.2	2.9	12	11	48	0.49	106.24		106.24
9-Aug	cloud	11		1648829	281	967190	320	0.39	6.4	2.8	12	7	51	0.38	81.34		81.34
10-Aug	cloud	17		1649040	211	967501	311	0.342	4.3	2.2	12	13	49	0.83	81.34		81.34
11-Aug	sun	20		1649325	285	967769	268	0.305	4		12	21	37	0.65	81.34		81.34
12-Aug	sun	12		1649620	295	968074	305	0.334	1			22	49	0.85	81.34		81.34
13-Aug	sun	10		1649899	279	968408	334	0.412				21	53	0.79	81.34		81.34
14-Aug	sun	13		1650240	341	968747	339	0.625	5.7		12	25	49	1.27	81.34		81.34
15-Aug	cloud	17		1650540	300	969145	398	0.937	5.2		12	26	43	2.05	81.34		81.34
16-Aug	cloud	21		1650896	356	969508	363	0.824				23	44	1.87	92.96		92.96
17-Aug	rain	10		1651225	329	969866	358	0.586	4.8		12	37	49	2.54	92.96		92.96
18-Aug	cloud	11		1651649	424	970340	474	0.693	2.2			21	48	2.4	106.24		106.24
19-Aug	sun	9		1652029	380	970753	413	0.645	5.8		12	12	54	1.22	106.24		106.24
20-Aug	cloud	9		1652300	271	971052	299	0.707	1.8			7	52	1.24	106.24		106.24
21-Aug	rain	12		1652577	277	971335	283	0.759	4.2	4.2	12	14	55	2.45	81.34		81.34
22-Aug	cloud	15		1652837	260	971646	311	0.8	4.2	5.5	12	16	41	0.98	105.83		105.83
23-Aug	cloud	12		1653129	292	972034	388	1.84	6		12	26	46	1.32	105.83		105.83
24-Aug	fog	9		1653409	280	972298	264	1.18	2.4			22	44	0.58	105.83		105.83
25-Aug	sun	2		1653727	318	972613	315	1.35	3.8		9	10	45	0.6	105.83		105.83
26-Aug	sun	11		1653928	201	972873	260	0.647	6.3		12	23	45	0.46	105.83		105.83
27-Aug	cloud	11		1654179	251	973143	270	0.622	5.6		10	20	46	0.59	105.83		105.83
28-Aug	cloud	11		1654490	311	973494	351	0.557	3.8		10	19	48	0.98	86.32		86.32
29-Aug	fog	10		1654745	255	973772	278	0.498	5.3		12	16	50	1.12	86.32		86.32
30-Aug	sun	10		1655002	257	974026	254	0.36	5.4	0.4	12	19	35	0.76	86.32		86.32
31-Aug	sun	12		1655241	239	974360	334	0.4	6.1	3.1	12	00.47	47.00	1.05	86.32	#DIV/01	86.32
Average	N/A	12.97			329.61		360.39	0.58	4.45	4.60	11.71	20.47	47.33	1.00	95.48	#DIV/0!	95.48
Median	N/A	12.00	0		300.00		339.00	0.50	4.80	4.20	12.00	21.00	48.00	0.79	93.38	#NUM!	93.38
Total	N/A	N/A	0		10218		11172	N/A	129.00	50.60	281	N/A	N/A	N/A	2959.78	0.00	2959.78

						Septerr	ber 202	21 WW	/TP Mo	nthly R	eport						
Date	Weather	Temp. (°c)	Skier Visits	Total Influent Flow (m ³)	Daily Influent flow (m ³)	Total Effluent Flow	Effluent Flow (m ³)	TSS (mg/L)	Solids Bagged (m ³)	Wasting (m ³)	Bags Rem'd	EQ Tank % Full	SD Tank % Full	Total PO₄ (mg/L)	East RBC (I/d)	West RBC (I/d)	Alum/PAC (I/d)
				1655241		974360											
1-Sep	sun	9		1655445	204	974566	206	0.3	4.9		12	10	34	0.46	86.32		86.32
2-Sep	sun	6		1655582	137	974697	131	0.265	5.9		12	8	33	0.45	86.32		86.32
3-Sep	sun	11		1655734	152	974917	220	0.311	4.6		10	23	31	0.74	75.53		75.53
4-Sep	sun	9		1655948	214	975153	236	0.327	5.3		12	24	30	0.67	75.53		75.53
5-Sep	sun	13		1656214	266	975460	307	0.515	5.5	3.8	12	34	29	1.29	75.53		75.53
6-Sep	sun	15		1656594	380	975836	376	0.57	4.6	3.8	12	22	29	0.87	92.96		92.96
7-Sep	sun	9		1656935	341	976317	481	0.54	5.8	5.8	12	15	25	0.45	106.24		106.24
8-Sep	sun	6		1657146	211	976534	217	0.5	5.7		12	10	27	0.28	81.34		81.34
9-Sep	sun	13		1657320	174	976801	267	0.329	1.3			1	26	0.61	81.34		81.34
10-Sep	cloud	17		1657484	164	976984	183	0.278	3.9		12	10	26	0.43	81.34		81.34
11-Sep	rain	12		1657666	182	977182	198	0.269	5.1		12	5	26	0.34	81.34		81.34
12-Sep	cloud	12		1657799	133	977347	165	0.315		9.8		15	24	0.72	64.74		64.74
13-Sep	cloud	10		1657980	181	977587	240	0.311		4.5		8	30	0.61	81.34		81.34
14-Sep	cloud	5		1658104	124	977701	114	0.26				16	32	0.52	81.34		81.34
15-Sep	cloud	13		1658278	174	977903	202	0.44				17	33	0.36	81.34		81.34
16-Sep	sun	3		1658423	145	978043	140	0.4		6.1		25	34	0.21	59.76		59.76
17-Sep	cloud	2		1658610	187	978266	223	0.601	1.3			26	37	1.22	59.76		59.76
18-Sep	cloud	13		1658861	251	978596	330	0.475		0.7		26	38	1.01	59.76		59.76
19-Sep	cloud	10		1659199	338	978981	385	0.7				32	32	0.91	81.34		81.34
20-Sep	cloud	4		1659456	257	979269	288	0.825				30	32	0.49	81.34		81.34
21-Sep	sun	5		1659702	246	979621	352	0.5	1.2			17	34	0.36	59.76		59.76
22-Sep	sun	6		1659888	186	979802	181	0.54	0.9	2.3		14	34	0.29	59.76		59.76
23-Sep	sun	8		1660093	205	979978	176	0.43	3.2	0.3		1	37	0.25	59.76		59.76
24-Sep	sun	8		1660283	190	980223	245	0.608			12	2	24	0.41	50.22		50.22
25-Sep	sun	11		1660429	146	980380	157	0.526	1.2	1.2		16	23	0.81	50.22		50.22
26-Sep	sun	10		1660645	216	980620	240	0.933	0.9			8	24	0.5	50.22		50.22
27-Sep	cloud	16		1660787	142	980829	209	0.868	2.7	3.9	12	12	24	0.48	70.14		70.14
28-Sep	rain	7		1660934	147	980984	155	0.923	1.4	3		26	26	1.08	50.22		50.22
29-Sep	cloud	8		1661186	252	981282	298	1.07	0.9	3		25	27	0.31	59.76		59.76
30-Sep	sun	10		1661388	202	981523	241	0.88			12	29	39	0.79	59.76		59.76
																	0.00
Average	N/A	9.37			204.90		238.77	0.53	3.32	3.71	11.85	16.90	30.00	0.60	71.48	#DIV/0!	69.17
Median	N/A	9.50			188.50		221.50	0.50	3.55	3.80	12.00	16.00	30.00	0.50	75.53	#NUM!	75.53
Total	N/A	N/A	0		6147		7163	N/A	66.30	48.20	154	N/A	N/A	N/A	2144.31	0.00	2144.31

						Octob	er 2021	1 WWT	P Mon	thly Re	port						
Date	Weather	Temp. (°c)	Skier Visits	Total Influent Flow (m ³)	Daily Influent flow (m ³)	Total Effluent Flow	Effluent Flow (m ³)	TSS (mg/L)	Solids Bagged (m ³)	Wasting (m ³)	Bags Rem'd	EQ Tank % Full	SD Tank % Full	Total PO₄ (mg/L)	=	West RBC (I/d)	Alum/PAC (I/d)
				1661388		981523											
1-Oct	Sun	6		1661610	222	981753	230	1.35	2.2			22	36	0.79	59.76		59.76
2-Oct	cloud	4		1661879	269	982075	322	1.29				11	26	0.48	59.76		59.76
3-Oct	cloud	12		1662072	193	982296	221	1.16	1.4	0.7		13	27	0.59	59.76		59.76
4-Oct	Sun	6		1662262	190	982510	214	1.13		0.4		6	27	0.75	59.76		59.76
5-Oct	Sun	8		1662406	144	982703	193	1	1.4	0.3		10	28	0.85	59.76		59.76
6-Oct	rain	9		1662543	137	982868	165	1.15	3		12	14	21	0.61	59.76		59.76
7-Oct	Sun	1		1662736	193	983077	209	1.11	1.3			10	20	0.54	59.76		59.76
8-Oct	Sun	-2		1662769	33	983214	137	1.11	0.9			26	20	0.15	59.76		59.76
9-Oct	Sun	-2		1663001	232	983497	283	1.57		0.7		9	20	0.22	59.76		59.76
10-Oct	rain	4		1663148	147	983706	209	1.57	0.9			21	21	0.15	59.76		59.76
11-Oct	Sun	-5		1663474	326	984092	386	2.5	0.4	0.2		21	23	1.30	59.76		59.76
12-Oct	Sun	-7		1663713	239	984422	330	1.9	1.5	0.5	12	11	24	0.45	93.38		93.38
13-Oct	cloud	0		1663869	156	984655	233	0.245		0.8		15	24	0.30	59.76		59.76
14-Oct	cloud	2		1664035	166	984873	218	2.9				12	25	0.40	59.76		59.76
15-Oct	rain	6		1664204	169	985038	165	1.23	1.7			16	26	0.20	59.76		59.76
16-Oct	cloud	5		1664393	189	985243	205	0.235		2.7		13	26	0.74	50.22		50.22
17-Oct	Sun	3		1664555	162	985456	213	0.41		0.5		10	27	0.62	50.22		50.22
18-Oct	Sun	1		1664728	173	985674	218	0.239	1.2	1		3	28	0.62	59.76		59.76
19-Oct	Sun	5		1664837	109	985676	2	0.282	3.1	4.1	7	13	29	0.63	59.76		59.76
20-Oct	cloud	-1		1664993	156	985892	216	0.521	1.4	6.4	4	14	22	0.82	59.76		59.76
21-Oct	cloud	3		1665172	179	986139	247	0.283	1.2	6.2		14	25	0.51	59.76		59.76
22-Oct	cloud	4		1665338	166	986318	179	0.398	0.4			14	27	0.38	59.76		59.76
23-Oct	rain	6		1665515	177	986548	230	0.351	2		10	26	26	0.48	59.76		59.76
24-Oct	cloud	6		1665779	264	986889	341	0.73	1.6	0.8	2	23	26	0.77	59.76		59.76
25-Oct	rain	6		1665991	212	987139	250	0.32	1			30	26	0.82	59.76		59.76
26-Oct	cloud	6		1666322	331	987540	401	0.703	1.8		12	22	27	0.48	59.76		59.76
27-Oct	cloud	3		1666588	266	987878	338	0.418	1.1	0.2		25	27	0.59	59.76		59.76
28-Oct	rain	4		1666847	259	988231	353	0.764	0.9			18	26	0.53	59.76		59.76
29-Oct	rain	5		1667362	515	988850	619	12.6				92	40	1.35	59.76	14.94	74.70
30-Oct	snow	0		1667814	452	989369	519	1.56				71	55	0.95	59.76	14.94	74.70
31-Oct	Sun	-5		1668264	450	989859	490	0.624	3.3		12	41	41	0.26	59.76	14.94	74.70
Average	N/A	3.00			221.81		268.90	1.34	1.53	1.70	8.88	20.84	27.29	0.15	60.23	14.94	61.67
Median	N/A	4.00			190.00		230.00	1.00	1.40	0.70	11.00	14.00	26.00	0.50	59.76	14.94	59.76
Total	N/A	N/A	0		6876		8336	N/A	33.70	25.50	71	N/A	N/A	0.33	1867.09	44.82	1911.91

November 2021 WWTP Monthly Report																		
Date	Weather	Temp. (°c)	Skier Visits	Total Influent Flow (m ³)	Daily Influent flow (m ³)	Total Effluent Flow	Effluent Flow (m ³)	TSS (mg/L)	Solids Bagged (m ³)	Wasting (m ³)	Bags Rem'd	EQ Tank % Full	SD Tank % Full	Total PO₄ (mg/L)	East RBC (I/d)	West RBC (I/d)	Alum/PAC (I/d)	B (m
				1668264		989859												1
1-Nov	sun	-8		1668583	319	990118	259	0.517	2.6	0.8		14	40	0.15	59.76	14.94	74.70	
2-Nov	sun	-4		1668834	251	990392	274	0.407	2.1		12	10	40	0.5	59.76	14.94	74.70	1
3-Nov	cloud	2		1669005	171	990675	283	0.563	1.3	0.2		4	40	0.33	59.76	14.94	74.70	<2.0
4-Nov	cloud	4		1669200	195	990891	216	0.209	1.1	6.2		4	36	0.25	59.76	14.94	74.70	1
5-Nov	rain	6		1669405	205	991164	273	0.786	0.9			24	38	0.42	59.76	14.94	74.70	1
6-Nov	cloud	1		1669729	324	991536	372	0.494	3.5		12	31	24	0.28	45.65	10.38	56.03	i i
7-Nov	snow	2		1670099	370	991962	426	9	1.3			19	18	0.16	45.65	10.38	56.03	i i
8-Nov	snow	1		1670344	245	992235	273	0.41	3.7	0.7	12	10	18	0.09	45.65	10.38	56.03	i i
9-Nov	cloud	-4		1670549	205	992521	286	1.5	2.4	0.4	11	0	18	0.24	41.50	10.38	51.88	i i
10-Nov	snow	0		1670690	141	992694	173	0.3		0.3		22	19	0.24	41.50	10.38	32.00	i i
11-Nov	cloud	-4		1670906	216	992937	243	0.5		0.3		23	20	0.19	26.56	6.64	33.20	i i
12-Nov	snow	0		1671122	216	993175	238	0.333	1.5		1	15	21	0.32	14.94	6.64	21.58	<2.0
13-Nov	cloud	0		1671544	422	993685	510	1.43	0.9	4.3		53	22	0.54	26.56	14.94	41.50	1
14-Nov	rain	0		1672091	547	994377	692	0.9	2.9		11	20	25	0.36	26.56	14.94	41.50	1
15-Nov	rain	9		1672783	692	995158	781	2.3		1		75	56	0.41	26.56	14.94	41.50	1
16-Nov	sun	-1		1673475	692	995968	810	0.625	2.4	0.6	1	28	57	0.58	26.56	14.94	41.50	1
17-Nov	sun	-8		1673859	384	996407	439	0.545	2.6	3.7	12	10	38	0.31	26.56	14.94	41.50	1
18-Nov	sun	-4		1674070	211	996666	259	0.569	1.6			21	27	0.71	6.64	6.64	13.28	
19-Nov	snow	-1		1674252	182	996888	222	0.384	1	1		19	27	0.98	12.45	12.45	24.90	
20-Nov	cloud	-2		1674435	183	997083	195	0.422	1.6	1	10	19	27	0.88	12.45	12.45	24.90	l l
21-Nov	cloud	0		1674597	162	997300	217	0.489	2.6	0.9	12	16	28	1.11	12.45	12.45	24.90	l l
22-Nov	cloud	-3		1674771	174	997498	198	0.565	1	0.2		10	28	1.23	14.94	14.94	29.88	
23-Nov	snow	-2		1674944	173	997691	193	0.84		2.4		10	52	1.02	29.88	14.94	44.82	l l
24-Nov	cloud	-6		1675081	137	997851	160	0.79		0.8		10	30	0.98	19.92	14.94	34.86	
25-Nov	snow	1		1675195	114	998037	186	0.452		10		14	33	0.4	14.94	14.94	29.88	l l
26-Nov	rain	2		1675406	211	998282	245	0.305	1.1	1.6		23	35	0.5	14.94	14.94	29.88	l l
27-Nov	cloud	0		1675709	303	998632	350	0.582	3.7		12	20	38	0.64	14.94	14.94	29.88	
28-Nov	rain	10		1676007	298	999007	375	0.413	2.1	1.4		52	38	1.03	14.94	14.94	29.88	l l
29-Nov	cloud	7		1676493	486	999607	600	0.6	1	2.3	12	38	37	1.05	14.94	14.94	29.88	
30-Nov	rain	4		1676929	436	1000075	468	0.488		4		21	40	0.58	14.94	14.94	29.88	i i
																	0.00	i i
Average	N/A	0.07			288.83		340.53	0.92	1.95	2.00	9.83	21.17	32.33	0.55	29.71	13.10	40.79	i i
Median	N/A	0.00			216.00		273.00	0.53	1.60	1.00	12.00	19.00	31.50	0.46	26.56	14.94	34.86	1
Total	N/A	N/A	0		8665		10216	N/A	44.90	44.10	118	N/A	N/A	N/A	891.42	393.01	1264.55	i i

	December 2021 WWTP Monthly Report																
Date	Weather	Temp. (°c)	Skier Visits	Total Influent Flow (m ³)	Daily Influent flow (m ³)	Total Effluent Flow	Effluent Flow (m ³)	TSS (mg/L)	Solids Bagged (m ³)	Wasting (m ³)	Bags Rem'd	EQ Tank % Full	SD Tank % Full	Total PO₄ (mg/L)	East RBC (I/d)	West RBC (I/d)	Alum/PAC (I/d)
				1676929		1000075											
1-Dec	rain	6		1677536	607	1000810	735	0.465				52	44	0.82	14.94	14.94	29.88
2-Dec	cloud	6		1678256	720	1001585	775	0.379	2.9			15	27	0.31	14.94	14.94	29.88
3-Dec	sun	-4		1678528	272	1001893	308	0.524	1.5	4.2	12	14	28	0.25	14.94	14.94	29.88
4-Dec	snow	-4		1678754	226	1002166	273	0.315	0.8			14	28	0.37	14.94	14.94	29.88
5-Dec	sun	-6		1678955	201	1002440	274	0.381	1.9	5.3		15	29	0.85	14.94	14.94	29.88
6-Dec	snow	-7		1679128	173	1002629	189	0.630				14	31	0.92	14.94	14.94	29.88
7-Dec	sun	-8		1679291	163	1002808	179	0.730				17	33	1.15	14.94	14.94	29.88
8-Dec	snow	0		1679447	156	1002973	165	0.681			12	19	33	1.10	14.94	14.94	29.88
9-Dec	cloud	-4		1679696	249	1003183	210	0.668				13	34	1.55	41.50	14.94	56.44
10-Dec	cloud	-10		1679843	147	1003432	249	0.586	2.1			7	34	0.76	41.50	14.94	56.44
11-Dec	snow	-1		1679987	144	1003666	234	0.420	2.7	1		21	34	0.87	41.50	14.94	56.44
12-Dec	cloud	0		1680330	343	1004021	355	0.500	0.9			9	34	1.26	41.50	14.94	56.44
13-Dec	cloud	-4		1680528	198	1004261	240	0.580	0.8	0.6		19	34	0.95	59.76	14.94	74.70
14-Dec	snow	-2		1680737	209	1004480	219	0.525		8.5		20	36	0.79	41.50	14.94	56.44
15-Dec	sun	-9		1680977	240	1004812	332	0.479	2.2		7	19	37	1.10	41.50	14.94	56.44
16-Dec	cloud	-9		1681200	223	1005041	229	0.469	2.5	1.4		18	38	0.78	50.22	14.94	65.16
17-Dec	sun	-18		1681421	221	1005298	257	0.585	2.7	0.7		17	38	0.93	50.22	14.94	65.16
18-Dec	snow	-10		1681664	243	1005585	287	0.517	3.6	15.4	13	23	38	1.25	50.22	14.94	65.16
19-Dec	sun	-6		1681915	251	1005865	280	0.475	3	3.9	3	31	43	1.87	50.22	14.94	65.16
20-Dec	sun	-11		1682181	266	1006159	294	0.540	3.8	1	9	43	46	1.36	70.14	14.94	85.08
21-Dec	sun	-10		1682552	371	1006548	389	0.420	2.8	0.8		38	48	0.92	93.38	14.94	108.32
22-Dec	snow	-3		1683034	482	1007069	521	0.713	2.1			22	50	1.22	93.38	14.94	108.32
23-Dec	snow	1		1683425	391	1007566	497	0.490	3.7			13	52	0.47	93.38	14.94	108.32
24-Dec	snow	-6		1683935	510	1008087	521	0.362	2.2	18.1		20	53	1.86	33.62	33.62	67.23
25-Dec	snow	-6		1684165	230	1008347	260	0.188	4.6	9.1	12	20	50	0.23	50.22	50.22	100.43
26-Dec	snow	-26		1684535	370	1008761	414	0.367	1.9	16.2		18	54	0.66	26.56	33.62	60.18
27-Dec	sun	-23		1684911	376	1009176	415	0.400	4.8	4.3	26	6	64	0.53	26.56	33.62	60.18
28-Dec	snow	-22		1685266	355	1009592	416	0.400	5.3	5.3	8	16	65	0.59	26.56	33.62	60.18
29-Dec	sun	-27		1685687	421	1010027	435	0.500	5.5	3.9	12	18	68	1.03	26.56	14.94	41.50
30-Dec	sun	-16		1686110	423	1010546	519	0.600	4.7	7.6	8	26	71	1.66	26.56	14.94	41.50
31-Dec	sun	-16		1686535	425	10110340	486	0.923	3	1.8	1	20	76	1.53	33.62	20.34	53.95
Average	N/A	-8.23		1000333	309.87	1011032	353.45	0.923	2.88	5.74	10.25	19.97	43.55	0.97	39.67	18.66	58.33
Median	N/A	-6.00			251.00		294.00	0.50	2.70	4.20	10.50	18.00	38.00	0.92	41.50	14.94	56.44
Total	N/A	N/A	0		9606		10957	N/A	72.00	109.10	123	N/A	N/A	N/A	1229.65	578.51	1808.16

		2021 Summary																											
	Temperature Total		perature Total Influent flow		Effluent Flow			TS	TSS			ed	Volume Wasted			Amount of Bags Removed			EQ Tank % Full		SD Tank % Full		Total PO4 (mg/L)		Alum/ PAC us		ie (L)		
	Average	Median	Skiers	Average	Median	total	Average	Median	total	Average	Median	Average	Median	total	Average	Median	total	Average	Median	total	Average	Median	Average	Median	Average	Median			
Januarv	-4.4	-4.0	1	329.5	329.5	10215	375.0	371.0	11624	1.9	1.5	4.5	4.4	133.9	5.3	5.4	133.3	9.0	9.5	271	24.00	31.00	56.84	57.00	0.79	0.65	70.66	72.21	1516.00
February	-9.0	-5.5		353.4	363.5	9894	387.1	403.0	10840	0.4	0.3	3.6	3.4	100.4	7.1	6.8	135.3	8.3	9.0	215	32.07	36.50	62.61	64.50	0.76	0.78	75.93	79.68	1656.00
March	-0.5	0.0		439.9	443.0	13636	500.3	498.0	15510	0.5	0.3	4.6	4.7	143.4	7.4	7.2	66.6	11.1	12.0	311	28.13	38.00	70.97	70.00	0.66	0.66	79.80	76.36	1248.00
Q1	-4.7	-4.0	0	374.2	363.5	33745	420.8	403.0	37974	0.9	0.3	4.2	4.4	377.7	6.6	6.8	335.2	9.5	9.5	797	28.07	36.50	63.47	64.50	0.74	0.66	75.46		4420.00
April	3.7	3.5		355.9	317.0	10677	355.9	357.5	12300	0.2	0.8	4.5	4.5	130.2	5.5	6.7	55.4	11.1	12.0	311	30.70	29.00	69.93	70.00	0.55	0.52	50.04	26.56	656.50
May	6.8	6.0		255.5	274.0	7919	297.9	307.0	9235	0.4	1.4	3.6	3.8	110.2	4.3	3.9	89.8	11.7	12.0	280	21.20	21.00	52.23	51.50	0.46	0.33	44.58	47.31	478.10
June	14.9	15.0		280.6	281.0	8419	311.3	307.5	9338	0.3	0.9	2.6	3.1	63.5	7.0	6.7	83.5	12.0	12.0	204	21.70	21.00	49.73	22.00	0.64	0.53	28.38	49.80	455.70
Q2	8.5	6.0	0	297.3	281.0	27015	321.7	307.5	30873	0.3	0.9	3.6	3.8	303.9	5.6	6.7	228.7	11.6	12.0	795	24.53	21.00	57.30	51.50	0.55	0.52	41.00	47.31	1590.30
July	19.1	18.0		397.8	379.0	12332	430.4	379.0	13341	0.4	0.3	3.3	3.4	50.0	4.6	3.4	73.5	11.6	12.0	232	33.74	33.00	55.71	55.00	0.56	0.47	83.50	93.38	2588.36
August	13.0	12.0		329.6	300.0	10218	360.4	339.0	11172	0.6	0.5	4.4	4.8	129.0	4.6	4.2	50.6	11.7	12.0	281	20.47	21.00	47.33	48.00	1.00	0.79	95.48	93.38	2959.78
September	9.4	9.5		204.9	188.5	6147	238.8	221.5	7163	0.5	0.5	3.3	3.6	66.3	3.7	3.8	48.2	11.8	12.0	154	16.90	16.00	30.00	30.00	0.60	0.50	69.17	75.53	2144.31
Q3	13.8	12.0	0	310.8	300.0	28697	343.2	339	31676	0.5	0.5	3.7	3.6	245.3	4.3	3.8	172.3	11.7	12.0	667	23.70	21.00	44.35	48.00	0.72	0.50	82.71	93.38	7692.44
October	3.0	4.0		221.8	190.0	6876	268.9	230.0	8336	1.3	1.0	1.5	1.4	33.7	1.7	0.7	25.5	8.9	11.0	71	20.84	14.00	27.29	26.00	0.15	0.50	61.67	59.76	1911.91
November	0.1	0.0		288.8	216.0	10216	340.5	273.0	10216	0.9	0.5	2.0	1.6	44.9	2.0	1.0	44.1	9.8	12.0	118	21.17	19.00	32.33	31.50	0.55	0.46	40.79	34.86	1264.55
December	-8.2	-6.0		309.9	251.0	9606	353.5	294.0	10957	0.5	0.5	2.9	2.7	72.0	5.7	4.2	109.1	10.3	10.5	123	19.97	18.00	43.55	38.00	0.97	0.92	58.33	56.44	1808.16
Q4	-1.7	0.0	0	273.5	216.0	26698	321.0	273	29509	0.9	0.5	2.1	1.6	150.6	3.1	1.0	178.7	9.7	11.0	312	20.66	18.00	34.39	31.50	0.56	0.50	53.60	56.44	4984.61
Annual	4.0	3.8	0	314.0	290.5	116155	351.7	323.3	130032	0.7	0.5	24	2 5	1077.5	4.0	4.2	914.9	10.6	12.0	2571	24.2	21.0	49.9	49.8	0.6	0.5	63.2	66.0	18687.35

1

Date: September 30, 2002

Our File: RE 17139

REGISTERED MAIL

Resorts of the Canadian Rockies Inc. PO Box 997 Victoria, BC V8W 2S8

Resorts of the Canadian Rockies Inc. 1507 – 17th Avenue, SW Calgary Alberta T2T 0E2

Dear Sir:

Re: Registration under the *Municipal Sewage Regulation* of the discharge to the Elk River from the Fernie Alpine Resort sewage treatment plant located at District Lot 8980, Kootenay District (Plan 1687) near Fernie British Columbia

This is to acknowledge your registration form under the Municipal Sewage Regulation (the Regulation) dated August 30, 2001, and received at this office on October 31, 2001, for the registration of the wastewater treatment plant owned and operated by Resorts of the Canadian Rockles Inc. at the Fernie Alpine Resort ski hill located near Fernie, British Columbia. Pursuant to Part 2, section 3 of the Regulation, the effective date of registration of this discharge is the date of this letter. The ministry file number for this discharge is RE 17139. Please indicate this number on all future correspondence regarding this discharge.

The initial registration fee is \$148.55. Please submit to the Regional Manager (the Manager) a cheque payable to the Minister of Finance and Corporate Relations, for this amount by September 25, 2002. An annual registration fee will be determined according to the Waste Management Permit Fees Regulation and you will be receiving an annual invoice from the ministry for payment of this fee. Payment of all fees due is necessary to comply with the Regulation. Rees will be calculated using a maximum effluent flow of 1280 m^3/day , a maximum BOD₅ of 45 mg/L and a maximum TSS of 45 mg/L.

We wish to remind you that the discharger is responsible for compliance with the requirements of the *Regulation*, the registration, the *Waste Management Act* (the *Act*) and this registration letter. Your attention is respectfully directed to the terms and conditions outlined in the *Regulation*, the registration, this registration letter and the *Ac*. Compliance with all the terms and conditions of the *Regulation*, the registration and this registration letter is required. Contravention of any of the conditions of the *Regulation*, the registration and this registration and this letter is a violation of the *Act* and may result in prosecution.

Ministry of Water, Land end Air Protection

Koolansy Region

Malling/Location Address; 401 • 383 Victoria Bireo; Nelson BC VIL 4X3

Telephone: 260 354-5333 Facsimile: 250 864-6332 PF Facsimile:250 354-8367

08/13/03 WED 16:27 [TX/RX NO 8432]

2

We also wish to draw your attention to the Environmental Impact Study Guideline dated December 2000 or the latest version and the *Regulation* Compliance Guideline dated January 2001 or the latest version, these policy documents are used in conjunction with the *Regulation*, the registration and the Act.

The Regulation and policy documents are available at :

http://wlapwww.gov.bc.ca/epd/epdpa/mpp/msrhome.html

This letter does not replace the Act, regulations issued under the Act or the Regulation. It does not list all provisions relating to municipal sawage discharges. If there are differences or omissions in this document then the Act, the regulations issued under the Act and the Regulation apply except where expressly noted in this letter.

Registration under the *Regulation* should not be construed as a representation that the suthorized works are adequately designed or will satisfy the *Regulation*. It is the responsibility of the discharger to ensure that the works are adequately designed, constructed and operated and that the discharge quality complies with the *Regulation* and this letter. Registration under the *Regulation* and this letter are without prejudice to any additional works that may be required or any additional requirements that may be specified by the *Manager*. The *Manager* may also issue Orders under the *Act*.

Registration under the *Regulation* does not authorise entry upon, crossing over, or use for any purpose of private or Crown lands or works, unless and except as authorised by the owner of such lands or works. The responsibility for obtaining such authority shall rest with the discharger. It is also the responsibility of the discharger to ensure that all activities conducted under this registration are carried out with regard to the rights of third parties and comply with other applicable legislation that may be in force. The discharger must also obtain any necessary approvals from other agencies.

Administration of the Act, the Regulation, the registration and this registration letter will be carried out by staff from our Sub-Regional Office located at #205 Industrial Road G, Cranbrook, British Columbia, V1C 7G5, (telephone: (250) 489-8570) or from our Regional Office located at #401 - 333 Victoria Street, Nelson, British Columbia, V1L 4K3. Plans, data and reports pertinent to the Regulation, registration and this letter are to be submitted to the Manager at the Sub-Regional office address at Cranbrook, British Columbia in the form required by the Regulation or in the form required by the Manager. The ministry uses a reference number to track monitoring data associated with discharges. The site reference number for this discharge is B102571.

08/13/03 WED 16:27 [TX/RX NO 6432]

8

Registration Reference Documents

This registration under the Regulation is based on the following documents:

- 1. The Fernie Alpine Resort Limited, Registration Form dated August 30, 2001 and received
 - October 31, 2001.
- Environmental Impact Study, Sewage Treatment Plant at Femie Alpine Resort, prepared for Femie Alpine Resort Ltd. by Highwood Environmental Management Limited dated April 2001.
- Environmental Impact Study for Fernie Alpine Resort's Wastewater Discharge into the Elk River, Interim Report prepared by Conor Pacific Environmental Technologies Incorporated dated May 1, 2001.
- May 1, 2001.
 Fernie Alpine Resort, Wastewater Treatment Plant, Guiding Document for Proposed Improvements 2001 prepared by Urban Systems dated May 2001.
- 5. Urban Systems drawings titled Fernie Alpine Resort Wastewater Treatment Plant Expansion dated August, 2001.

Treatment Plant Works

The treatment plant works are one influent maccrator and screen, two aeration flow equalization tanks, a separate equalization tank, two clariflers, two three stage rotating biological contactors, two flocculation tanks with mixers and coagulant feed, two sand filters, a backwash water settling tank, UV disinfection units, one aerated biosolids (sludge) digestion tank, biosolids (sludge) dewatering equipment and a pipeline and outfall to the Rik River and related appurtenances approximately as shown on Urban Systems drawings titled Fernie Alpine Resort Wastewater Treatment Plant Expansion dated August, 2001 or on the attached Site Plan. The plant maximum daily flow and discharge to the environment is 1280 m³/day. The effluent quality shall be BODs of <u>45 mg/L</u>, TSS of <u>45 mg/L</u>, total phosphorus of <u>1.0 mg/L</u>, ortho phosphate <u>0.5 mg/L</u> and the effluent shall also pass a 96 hour LC50 bioassay test.

Primary Screenings and Dewatered Blosslids (Sludge) Dispesel

Primary screenings and dewatered biosolids (aludge) from the treatment plant shall be disposed at the Crowsnest/Pincher Creek Landfill. The discharger shall submit confirmation of acceptance of the screenings and biosolids by the Crowanest/Pincher Creek Landfill Authority on or before October 25, 2002. If primary screenings and dewatered biosolids (sludge) from the treatment plant are not disposed at the Crowsnest/Pincher Creek Landfill they must be disposed in accordance with an authorization issued under the Act, the Organic Matter Recycling Regulation or in a manner approved by the Manager.

Semi-solid Waste

The discharger shall not accept semi-solid wastes at the treatment plant. Semi-solid wastes means septic tank pumpage, holding tank solids or sludge from sewage facilities.

4

Plant Design

The treatment plant design must be in accordance with Schedule 7 of the *Regulation* and meet reliability Category I. The discharger shall provide written confirmation that the treatment plant works meet reliability Category I and confirm that multiple disinfection units have been installed. The confirmation shall be submitted on or before October 25, 2002.

<u>Qutfall</u> Diffuser

The discharger shall install an outfall diffuser in accordance with Part 4, Section 5 and Schedule 7, Condition 4 of the *Regulation*. The diffuser shall be installed on or before August 31, 2003. The discharger must obtain all necessary approvals from other agencies prior to installing the diffuser.

Additional Works

The works are to be designed to allow for additional facilities in future to reduce effluent ammonia levels if ammonia levels in the Blk River exceed the current British Columbia Approved Water Quality Guidelines (Criteria) or if monitoring results indicate exceedance of the current Criteria for ammonia is imminent. Water quality Criteria apply at the edge of the initial dilution zone.

The works are also to be designed to allow for increased phosphorus removal if algae problems develop in the Elk River.

Operator Oualifications and Certification

The discharger shall ensure that the treatment plant is classified and the treatment plant operators certified in accordance with Part 6, Section 22 of the *Regulation*. Proof of treatment plant classification (copy of classification) and operator certification (copy of cartification) shall be submitted to the *Manager* on or before October 25, 2002.

Monitoring

The discharger shall undertake monitoring in accordance with Part 7 and applicable conditions of Schedule 6 of the *Regulation* subject to the requirements as follows:

& cluck sh

Sampling and Analysis

Ĉ

Sampling and analysis shall be in accordance with Part 7, Section 25 of the Regulation. Minimum detection limits for nutrients shall be:

Ammonia	5µg/L	(ppm)
Nitrate	5 μg/L	- 14 - 1
Nitrite	2 μg/L	
Total Phosphorus	3 μg/L	
Orthophosphate	3 μg/L	

These detection limits shall only apply to the analysis of samples obtained from the Elk River. These detection limits will not apply to the analysis of samples obtained from the plant influent and effluent.

Please note the requirement to submit data in accordance with the Environmental Data Quality Assurance Regulation as per Section 25 (3) of the Regulation.

Discharge Monitoring and Receiving Environment Monitoring

In accordance with Part 7, Section 26 and 27 of the *Regulation* the discharger shall undertake the following monitoring program:

•

, 6

Sampling Location Frequency/Type

	Elk River ⁴ (At Sites UP, IDZ and DN)	Plant Influent ³	Plant Effluent ³
Parameter			
pH (field test) temperature (field test)	WS/G WS/G	· · · · ·	M/G and WS/G
flow,	·····	D/CON.	D/CON.
BOD ₅ ¹	·	M/G	M/G and WS/G
TSS ²	WS/G	M/G	M/G and WS/G and D/CON.
ammonia (as nitrogen)	₩ \$/ G		M/G and WS/G
nitrate (as nitrogen)	WS/G	1	M/G and WS/G
nitrite (as nitrogen)	WS/G	1	M/G and WS/G
total phosphorus	WS/G	1	M/G and WS/G
	Elk River ⁴ (At Sites UP, IDZ and DN)	Piant Influent ³	Plant Effluent ³
orthophosphate	W\$/G		M/G and WS/G
fecal coliforms	WS/G	-	M/G and WS/G
Toxicity			3Y/G

1. BODs - means the total 5-day blochemical oxygen demand,

2. TSS - means total suspended solids or non-filterable residue.

3. Plant influent and effluent samples must be obtained at peak times on peak flow days. The peak flow days shall be based on bookings at the resort. An influent flow meter shall be installed on or before December 31, 2003.

4. Sampling of the Elk River shall be done on the same day as plant influent and effluent sampling and also correspond with peak flow days at the resort in a manner similar to plant influent/effluent sampling.

08/13/03 WED 16:27 [TX/RX NO 6432]

, 6

Sampling Location Frequency/Type

	Elk River ⁴ (At Sites UP, IDZ and DN)	Plant Influent ³	Plant Effluent ³
Parameter			
pH (field test) temperature (field test)	WS/G WS/G		M/G and WS/G
flow.	······································	D/CON.	D/CON.
BOD ₅ ¹ TSS ²	WS/G	M/G M/G	M/G and WS/G M/G and WS/G
ammonia (aa nitrogen)	WS/G		and D/CON. M/G and WS/G
nitrate (as nitrogen)	WS/G		M/G and WS/G
nitrite (as nitrogen) total phosphorus	WS/G WS/G	<u> </u>	M/G and WS/G M/G and WS/G
-	Elk River ⁴ (At Sites UP, IDZ and DN)	Plant Influent ³	Plant Effluent ³
orthophosphate	W\$/G		M/G and WS/G
fecal coliforms	WS/G		M/G and WS/G
Toxicity			3Y/G

1. BODs - means the total 5-day biochemical oxygen demand.

2. TSS - means total suspended solids or non-filterable residue.

- 3. Plant influent and effluent samples must be obtained at peak times on peak flow days. The peak flow days shall be based on bookings at the resort. An influent flow meter shall be installed on or before December 31, 2003.
- 4. Sampling of the Elk River shall be done on the same day as plant influent and effluent sampling and also correspond with peak flow days at the resort in a manner similar to plant influent/effluent sampling.

08/13/03 WED 16:27 [TX/RX NO 6432]

7

Sampling Frequency:

D - means daily,

M - means monthly.

WS - weekly seasonal (This means obtaining samples weekly for a six week period in the spring, in the fall and during the Christmas season at peak flow times and days. Peak flow days will be predicted on the basis of resort bookings. The commencement of the spring and fall sampling sessions depends on weather and hydrologic conditions. The spring sampling should begin early in the spring after ice-out when river flows are low and the fall sampling should begin when river flows are low and turbidity is low. Professional judgment should be used regarding the start times of the weekly sampling programs in the spring and fall. The Christmas sampling should begin in mid December and extend into January. During the six week sampling period the monthly sampling is not necessary.)

3Y - means three times per year to correspond with the WS sampling.

Sample Type;

G - means grab sample (Note; when obtaining samples of the influent and effluent the grab samples will be taken on peak flow days at peak flow times during the day. Peak days shall be predicted on the basis of bookings at the resort.)

CON, - means continuous using a data logger. (Note: Flow meters and TSS monitors shall be calibrated. The flow meter and TSS meter calibration frequency and procedures shall be contained in the operating plan.)

Monitoring for Plant Operation Purposes

The discharger is expected to undertake additional monitoring for plant operation purposes. The monitoring program outlined in this letter is not considered adequate for plant operation purposes.

Bavironmental Monitoring System (BMS) Numbers

The following are the EMS site numbers assigned to the monitoring sites listed above. These numbers are to be used when entoring data directly into the Ministry BMS database in accordance with Part 7, Section 28 (2) of the *Regulation*. Monitoring data shall be submitted to the Ministry data base quarterly within 30 days of the end of each quarter. 5

20

RECEIVED

007 - 3 2002

Monitoring Program Changes

URBANSYSTEMS LTD.

The *Manager* may modify the monitoring program from time to time. The annual report shall contain recommendations regarding changes (additions/deletions/modifications) to the monitoring program.

9

Supervisory Control and Data Acquisition (SCADA)

The discharger is encouraged to install a SCADA system. SCADA systems may be a requirement in the future.

If you have any questions concerning this registration, please contact our Cranbrook Sub-Regional Office at (250) 489-8540.

Yours truly,

Carl Johnson, P.Bng. Assistant Regional Waste Manager

Лp

cc: Paul Bates, Resorts of the Canadian Rockies, Calgary Toby Todaro, Resorts of the Canadian Rockies, Calgary Etisf Gigliotti, P.Hng. Urban Systems, Kelowna Andrew Walls, Fernie Alpine Resort, Fernie Andrew Brown, Fernie Alpine Resort, Fernie Kon van Heyningen, Fernie Alpine Resort, Fernie Gary Lawrence, MWLAP, Cranbrook

08/13/03 WED 16:27 [TX/RX NO 6432]

FERNIE ALPINE RESORT UTILITIES CORPORATION ATTN: Patrick Majer 1505 - 17TH AVENUE SW CALGARY AB T2T 0E2 Date Received: 05-JAN-21 Report Date: 11-JAN-21 15:23 (MT) Version: FINAL

Client Phone: 800-258-7669

Certificate of Analysis

Lab Work Order #: L2545155 Project P.O. #: NOT SUBMITTED Job Reference: FARUC - EMS WEEK 4 C of C Numbers: Legal Site Desc:

May

Patryk Wojciak, B.Sc., P.Chem. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2545155-1 WWTP INFLUENT							
Sampled By: Carter Barrett on 04-JAN-21 @ 10:10							
Matrix: Water							
Miscellaneous Parameters							
Biochemical Oxygen Demand	166	DLHC	75	mg/L		06-JAN-21	R5341658
Total Suspended Solids	292		3.0	mg/L		07-JAN-21	R5339339
рН	7.86		0.10	pН		06-JAN-21	R5336839
L2545155-2 WWTP EFFLUENT							
Sampled By: Carter Barrett on 04-JAN-21 @ 10:15							
Matrix: Water							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		05-JAN-21	R5334656
Biochemical Oxygen Demand	3.4		2.0	mg/L		06-JAN-21	R5341658
Chemical Oxygen Demand	21		10	mg/L		05-JAN-21	R5334536
Orthophosphate-Dissolved (as P)	0.118	DLHC	0.010	mg/L		05-JAN-21	R5334120
Coliform Bacteria - Fecal	14		1	CFU/100mL		05-JAN-21	R5335577
Phosphorus (P)-Total	0.301	DLHC	0.020	mg/L		06-JAN-21	R5334854
Total Suspended Solids	<3.0		3.0	mg/L		07-JAN-21	R5339339
pH	8.16		0.10	pН		06-JAN-21	R5336839
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC							
Nitrate (as N)	28.6	DLHC	0.10	mg/L		05-JAN-21	R5335120
Nitrate+Nitrite			~			00 1411 04	
Nitrate and Nitrite (as N)	28.6		0.11	mg/L		06-JAN-21	
Nitrite in Water by IC Nitrite (as N)	<0.050	DLHC	0.050	mg/L		05-JAN-21	R5335120
L2545155-3 ELK RIVER UPSTREAM	<0.000	-	0.000	iiig/E		00 0/ 11 2 1	110000120
Sampled By: Carter Barrett on 04-JAN-21 @ 10:50							
Matrix: Water							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		05-JAN-21	R5334656
Orthophosphate-Dissolved (as P)	<0.0050		0.0050	mg/L		05-JAN-21	R5334120
Coliform Bacteria - Fecal	1		1	CFU/100mL		05-JAN-21	R5335577
Phosphorus (P)-Total	<0.0050		0.0050	mg/L		06-JAN-21	R5334854
Total Suspended Solids	<3.0		3.0	mg/L		07-JAN-21	R5339339
На	8.37		0.10	рН		06-JAN-21	R5336839
NO2, NO3 and Sum of NO2/NO3	0.07		0.1.0	P			
Nitrate in Water by IC							
Nitrate (as N)	1.91		0.020	mg/L		05-JAN-21	R5335120
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	1.91		0.022	mg/L		06-JAN-21	
Nitrite in Water by IC	<0.010		0.040	ma/l		05 1411 04	DEDOGADO
Nitrite (as N)	<0.010		0.010	mg/L		05-JAN-21	R5335120
L2545155-4 ELK RIVER OUTFALL							
Sampled By: Carter Barrett on 04-JAN-21 @ 10:45							
Matrix: Water							
Miscellaneous Parameters	0.070		0.055	/P			DE00.000
Ammonia, Total (as N)	<0.050		0.050	mg/L		05-JAN-21	R5334656
Orthophosphate-Dissolved (as P)	0.0093		0.0050	mg/L		05-JAN-21	R5334120
Coliform Bacteria - Fecal	4		1	CFU/100mL		05-JAN-21	R5335577
Phosphorus (P)-Total	0.0182		0.0050	mg/L		06-JAN-21	R5334854
Total Suspended Solids	<3.0		3.0	mg/L		07-JAN-21	R5339339

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2545155-4 ELK RIVER OUTFALL							
Sampled By: Carter Barrett on 04-JAN-21 @ 10:45							
Matrix: Water			0.40				DECOCOCO
pH NO2, NO3 and Sum of NO2/NO3	8.44		0.10	рН		06-JAN-21	R5336839
Noz, Nos and Sum of Noz/Nos							
Nitrate (as N)	0.150		0.020	mg/L		05-JAN-21	R5335120
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	0.150		0.022	mg/L		06-JAN-21	
Nitrite in Water by IC							
Nitrite (as N)	<0.010		0.010	mg/L		05-JAN-21	R5335120
L2545155-5 ELK RIVER DOWNSTREAM							
Sampled By: Carter Barrett on 04-JAN-21 @ 10:30							
Matrix: Water							
Miscellaneous Parameters	0.050		0.050				D500 1055
Ammonia, Total (as N)	< 0.050		0.050	mg/L		05-JAN-21	R5334656
Orthophosphate-Dissolved (as P)	<0.0050		0.0050	mg/L		05-JAN-21	R5334120
Coliform Bacteria - Fecal	1		1	CFU/100mL		05-JAN-21	R5335577
Phosphorus (P)-Total Total Suspended Solids	<0.0050		0.0050	mg/L		06-JAN-21 07-JAN-21	R5334854
	<3.0		3.0	mg/L			R5339339
pH NO2, NO3 and Sum of NO2/NO3	8.43		0.10	рН		06-JAN-21	R5336839
Noz, Nos and Sun of Noz/Nos							
Nitrate (as N)	1.89		0.020	mg/L		05-JAN-21	R5335120
Nitrate+Nitrite				5			
Nitrate and Nitrite (as N)	1.89		0.022	mg/L		06-JAN-21	
Nitrite in Water by IC							
Nitrite (as N)	<0.010		0.010	mg/L		05-JAN-21	R5335120

Sample Parameter Qualifier Key:

Qualifier	Description		
DLHC	Detection Limit Raise	ed: Dilution required due to high concentration	of test analyte(s).
est Method Re	eferences:		
ALS Test Code	Matrix	Test Description	Method Reference**
BOD-BC-CL	Water	Biochemical Oxygen Demand (BOD)	APHA 5210 B-5 day IncubO2 electrode
oxygen demand dissolved oxyger	(BOD) are determined meter. Dissolved BC	d by diluting and incubating a sample for a spec	iochemical Oxygen Demand (BOD)". All forms of biochemical ified time period, and measuring the oxygen depletion using a mple through a glass fibre filter prior to dilution. Carbonaceous or to incubation.
COD-T-COL-CL	Water	Chemical Oxygen Demand (COD)	APHA 5220 D Colorimetry
Samples are ana	lyzed using the close	d reflux colourimetric method	
FCC-MF-CL	Water	Fecal Coliform Count-MF	APHA 9222D
Coliform bacteria nvolves an initia	is enumerated by cu 24 hour incubation a	Ituring and colony counting. A known sample ve	brane Filter Technique for Members of the Coliform Group". blume is filtered through a 0.45 micron membrane filter. The test e growth medium. This method is specific for thermotolerant
N2N3-CALC-CL	Water	Nitrate+Nitrite	CALCULATION
NH3-F-CL	Water	Ammonia by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
			dified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society n of trace levels of ammonium in seawater", Roslyn J. Waston et
NO2-IC-N-CL	Water	Nitrite in Water by IC	EPA 300.1 (mod)
norganic anions	are analyzed by Ion (Chromatography with conductivity and/or UV de	tection.
NO3-IC-N-CL	Water	Nitrate in Water by IC	EPA 300.1 (mod)
norganic anions	are analyzed by Ion (Chromatography with conductivity and/or UV de	tection.
P-T-COL-CL	Water	Total P in Water by Colour	APHA 4500-P PHOSPHORUS
	arried out using procestion of the sample.	edures adapted from APHA Method 4500-P "Pt	nosphorus". Total Phosphorus is determined colourimetrically after
PH-CL	Water	pН	APHA 4500 H-Electrode
oH is determined hold time from tir	l in the laboratory usir ne of sampling (field a	ng a pH electrode. All samples analyzed by this analysis is recommended for pH where highly a	method for pH will have exceeded the 15 minute recommended ccurate results are needed)
PO4-DO-COL-CL	Water	Diss. Orthophosphate in Water by Colour	APHA 4500-P PHOSPHORUS
		edures adapted from APHA Method 4500-P "Ph been lab or field filtered through a 0.45 micron	osphorus". Dissolved Orthophosphate is determined membrane filter.
rss-cl	Water	Total Suspended Solids	APHA 2540 D-Gravimetric
		edures adapted from APHA Method 2540 "Solic nple through a glass fibre filter, and by drying t	ds". Solids are determined gravimetrically. Total suspended solids he filter at 104 deg. C.
ALS test metho	ds may incorporate m	odifications from specified reference methods t	o improve performance.
The last two lette	rs of the above test c	ode(s) indicate the laboratory that performed a	nalytical analysis for that test. Refer to the list below:

CL

ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA

Chain of Custody Numbers:

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
---------------	--------	------------------	--------------------

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS Environmental

www.alsenviro.com

ANALYTICAL CHEMISTRY & TESTING SERVICES

e: 1-800-665-0243 Fax: 604-253-6700 17 Fax: 250-261-5587 e: 1-800-668-9878 Fax: 780-513-2191 Fax: 780-791-1586 : 1-800-668-9878 Fax: 780-437-2311 bil Free: 1-800-668-9878 Fax: 403-291-0298

ee: 1-800-667-7645 Fax: 306-668-8383

SEN	D REPORT T	0:					- · ·	CHAIN OF C	US	TO	DY	FO	RM										PAGE		OF
CON	PANY:	FERNIE AL	PINE RESORT	UTILITIES	CORPOR	RATION	ATTN:	PATRICK MAJER	AN	ALYS	SIS F	REQU	JEST	ED:		· · · ·			,						
ADD	RESS:	1505 - 17TH	AVENUE SOU	TH WEST						· · · · ·															
CITY		CALGARY		PROV.	ALBERT	A	POSTAL CODE:	T2T 0E2							1. 1. se						+				-
TEL:	· .	403 - 256 -	8473	FAX:	403 - 24	4 - 3774	SAMPLER:	Carter Barrett																	
PRO	JECT NAME	AND NO.:	FARUC - Wint	ter EMS we	ek 4		QUOTE NO:	633058	·. ·						· .										
POI	NO.:			ALS CO		Patryk Woyciak																			
REP	ORT FORMA	T:					p naje @skirc	r.com	Coliforms			۵.	ū.			_							<u>. </u>		
	WO#	Ś	SAMPLE IDENTIF	ICATION	-	DATE / TIME		MATRIX	Fecal (TSS	Hd	Ortho	Total F	NH3-N	N-SON	NO2-N	BOD5	5	:						le specific dates, etc.)
	/	WWTPilofi	uent Routine			2021-01-04	10:10	Water		x	x														
	╞╶┼╶ ┥	WWTP Influ		<u>, , , , , , , , , , , , , , , , , , , </u>		2021-01-04	10:10	Water									х								
:	\vdash		uent Routine	3		2021-01-04	10:15	Water		X	X							х				•			
	-/	WWTP Eff		4		2021-01-04	10:15	Water							1		х								
	25		uent Nutrients	5	- 19 (j. 1	2021-01-04	10:15	Water	1.		1.1	x	х	х	X	.X.									
			uent Bacteriolog	jical 6		2021-01-04	10:15	Water	X																
	-7	A	pstream Routine		1. S.	2021-01-04	10: 5050	Water	s.	X	×														
7	3 (Eik River U	pstream Nutrien	ts &			10:30 50	Water				X	х	x	X	х									
FOR LAB USE ONLY	\vdash		pstream Bacteri		3	2021-01-04	10:3050	Water	X																
ы В		Elk River @	Outfall Routine	10		2021-01-04	0:45	Water		x	×					<u> </u>									
B L	41	Elk River @	Outfall Nutrien	ts 1/		2021-01-04	10:45	Water				X	X	X	: X	X									
12		Elk River @	Outfall Bacteri	ological /	2	2021-01-04	10:45	Water	X																
ē		Elk River D	ownstream Rou	tine /3		2021-01-04	10:30	Water	Ŀ	x	×											Ŀ			
	ζ	Elk River D	ownstream Nutr	rients 14		2021-01-04	10:30	Water			<u> </u>	X	Х	Х	×	X	1								
		Elk River D	ownstream Bac	teriological	15	2021-01-04	10:30	Water	X		·	<u> </u>	ļ			<u> </u>	-								
										 ·			-		i .										
İ		+																							
								· · · ·								1									
			·																						12
	RN AROUND		•R	φ	R	SPECIFY DATE	:	(surcharge may apply)		-		INQUI		BY:		ļ.,	DATE:				RECI	EIVED		DATE:	HZ-
				- ·		-					+	ter Ba				1	TIME:	10	1:00	0	G	2		TIME:	8-4
SE	ND INVOICE	ro:		μľ	\Box	<u>, </u>	┝╸┝╸╵				REL	INQU	ISHED	BY:	· · ·		DATE:	<u> </u>			RECI	EIVED		DATE:	
							<u>r</u>				EO	R LA	R US	E O		1	TIME:	L		-	<u> </u>			TIME:	<u> </u>
SP	ECIAL INSTRI	UCTIONS:	PLEASE FAX wastewater@	A COPY C skifernie.co	OF THE R	ESULTS TO 25	0-423-4652 OR	E-MAIL TO			h	ler Se				Sam	ple Te	mpera	ature (\mathcal{D}	°C	Cooli	ng Method	d?	
1												Yes _			N/A		en?		· ·	No			epacks		None

FERNIE ALPINE RESORT UTILITIES CORPORATION ATTN: Patrick Majer 1505 - 17TH AVENUE SW CALGARY AB T2T 0E2 Date Received: 12-JAN-21 Report Date: 19-JAN-21 08:07 (MT) Version: FINAL

Client Phone: 800-258-7669

Certificate of Analysis

Lab Work Order #: L2547302 Project P.O. #: NOT SUBMITTED Job Reference: FARUC - WINTER EMS WEEK 5 C of C Numbers: Legal Site Desc:

May

Patryk Wojciak, B.Sc., P.Chem. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

FARUC - WINTER EMS WEEK 5

L2547302 CONTD.... PAGE 2 of 5 Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2547302-1 WWTP INFLUENT							
Sampled By: Carter Barrett on 11-JAN-21 @ 10:50							
Matrix: Water							
Miscellaneous Parameters							
Biochemical Oxygen Demand	128	DLHC	75	mg/L		12-JAN-21	R5352198
Total Suspended Solids	145		3.0	mg/L		17-JAN-21	R5350981
рН	7.96		0.10	pН		12-JAN-21	R5345177
_2547302-2 WWTP EFFLUENT							
Sampled By: Carter Barrett on 11-JAN-21 @ 10:50							
Matrix: Water							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		16-JAN-21	R5350127
Biochemical Oxygen Demand	<2.0		2.0	mg/L		12-JAN-21	R5352198
Chemical Oxygen Demand	11		10	mg/L		13-JAN-21	R5345179
Orthophosphate-Dissolved (as P)	0.235	DLHC	0.025	mg/L		12-JAN-21	R5343776
Coliform Bacteria - Fecal	3		1	CFU/100mL		12-JAN-21	R5345085
Phosphorus (P)-Total	0.275		0.0050	mg/L		13-JAN-21	R5344606
Total Suspended Solids	<3.0		3.0	mg/L		17-JAN-21	R5350981
рН	7.74		0.10	pН		12-JAN-21	R5345177
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC Nitrate (as N)	43.5	DLHC	0.10	mg/L		12-JAN-21	R5344822
Nitrate+Nitrite Nitrate and Nitrite (as N)	43.5		0.11	mg/L		13-JAN-21	
Nitrite in Water by IC Nitrite (as N)	<0.050	DLHC	0.050	mg/L		12-JAN-21	R5344822
_2547302-3 ELK RIVER UPSTREAM							
Sampled By: Carter Barrett on 11-JAN-21 @ 10:30							
Matrix: Water							
Miscellaneous Parameters						10 100104	
Ammonia, Total (as N)	<0.050		0.050	mg/L		16-JAN-21	R5350127
Orthophosphate-Dissolved (as P)	<0.0050		0.0050	mg/L		12-JAN-21	R5343776
Coliform Bacteria - Fecal	6		1	CFU/100mL		12-JAN-21	R5345085
Phosphorus (P)-Total	<0.0050		0.0050	mg/L		13-JAN-21	R5344606
Total Suspended Solids	<3.0		3.0	mg/L		17-JAN-21	R5350981
pH NO2, NO3 and Sum of NO2/NO3	8.33		0.10	рН		12-JAN-21	R5345177
Nitrate in Water by IC							
Nitrate (as N)	2.08		0.020	mg/L		12-JAN-21	R5344822
Nitrate+Nitrite				0			
Nitrate and Nitrite (as N)	2.08		0.022	mg/L		13-JAN-21	
Nitrite in Water by IC							
Nitrite (as N)	<0.010		0.010	mg/L		12-JAN-21	R5344822
_2547302-4 ELK RIVER OUTFALL							
Sampled By: Carter Barrett on 11-JAN-21 @ 10:35							
Matrix: Water							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		16-JAN-21	R5350127
Orthophosphate-Dissolved (as P)	0.0242		0.0050	mg/L		12-JAN-21	R5343776
Coliform Bacteria - Fecal	3		1	CFU/100mL		12-JAN-21	R5345085
Phosphorus (P)-Total	0.0294		0.0050	mg/L		13-JAN-21	R5344606
Total Suspended Solids	<3.0		3.0	mg/L		17-JAN-21	R5350981

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2547302-4 ELK RIVER OUTFALL Sampled By: Carter Barrett on 11-JAN-21 @ 10:35							
Matrix: Water pH	8.25		0.10			12-JAN-21	DE245477
NO2, NO3 and Sum of NO2/NO3	6.20		0.10	рН		12-JAIN-21	R5345177
Nitrate in Water by IC							
Nitrate (as N)	3.73		0.020	mg/L		12-JAN-21	R5344822
Nitrate+Nitrite				_			
Nitrate and Nitrite (as N)	3.73		0.022	mg/L		13-JAN-21	
Nitrite in Water by IC							
Nitrite (as N)	<0.010		0.010	mg/L		12-JAN-21	R5344822
_2547302-5 ELK RIVER DOWNSTREAM							
Sampled By: Carter Barrett on 11-JAN-21 @ 10:40							
Matrix: Water							
Miscellaneous Parameters	0.5.15		0.075			40 1411 01	D
Ammonia, Total (as N)	0.248		0.050	mg/L		16-JAN-21	R5350127
Orthophosphate-Dissolved (as P)	<0.0050		0.0050	mg/L		12-JAN-21	R5343776
Coliform Bacteria - Fecal	11		1	CFU/100mL		12-JAN-21	R5345085
Phosphorus (P)-Total	<0.0050		0.0050	mg/L		13-JAN-21	R5344606
Total Suspended Solids	<3.0		3.0	mg/L		17-JAN-21	R5350981
pH	8.33		0.10	рН		12-JAN-21	R5345177
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC	0.00		0.000			10 101 01	D5044000
Nitrate (as N)	2.08		0.020	mg/L		12-JAN-21	R5344822
Nitrate+Nitrite Nitrate and Nitrite (as N)	2.08		0.022	mg/L		13-JAN-21	
Nitrite in Water by IC	2.00		0.022	ing/L		13-3411-21	
Nitrite (as N)	<0.010		0.010	mg/L		12-JAN-21	R5344822

Sample Parameter Qualifier Key:

Qualifier	Description		
DLHC	Detection Limit Raise	d: Dilution required due to high concentration of	of test analyte(s).
Fest Method R	eferences:		
ALS Test Code	Matrix	Test Description	Method Reference**
BOD-BC-CL	Water	Biochemical Oxygen Demand (BOD)	APHA 5210 B-5 day IncubO2 electrode
oxygen demand dissolved oxyge	(BOD) are determined n meter. Dissolved BO	by diluting and incubating a sample for a spec	ochemical Oxygen Demand (BOD)". All forms of biochemical fied time period, and measuring the oxygen depletion using a nple through a glass fibre filter prior to dilution. Carbonaceous or to incubation.
COD-T-COL-CL	Water	Chemical Oxygen Demand (COD)	APHA 5220 D Colorimetry
Samples are and	alyzed using the closed	I reflux colourimetric method	
FCC-MF-CL	Water	Fecal Coliform Count-MF	APHA 9222D
Coliform bacteria involves an initia	a is enumerated by cult al 24 hour incubation at	turing and colony counting. A known sample vo	brane Filter Technique for Members of the Coliform Group". Jume is filtered through a 0.45 micron membrane filter. The test e growth medium. This method is specific for thermotolerant
N2N3-CALC-CL	Water	Nitrate+Nitrite	CALCULATION
NH3-F-CL	Water	Ammonia by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
			dified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society n of trace levels of ammonium in seawater", Roslyn J. Waston et
NO2-IC-N-CL	Water	Nitrite in Water by IC	EPA 300.1 (mod)
Inorganic anions	s are analyzed by Ion C	hromatography with conductivity and/or UV de	rection.
NO3-IC-N-CL	Water	Nitrate in Water by IC	EPA 300.1 (mod)
Inorganic anions	s are analyzed by Ion C	hromatography with conductivity and/or UV de	rection.
P-T-COL-CL	Water	Total P in Water by Colour	APHA 4500-P PHOSPHORUS
	carried out using proce estion of the sample.	dures adapted from APHA Method 4500-P "Ph	osphorus". Total Phosphorus is determined colourimetrically afte
PH-CL	Water	рН	APHA 4500 H-Electrode
		g a pH electrode. All samples analyzed by this nalysis is recommended for pH where highly a	method for pH will have exceeded the 15 minute recommended ccurate results are needed)
PO4-DO-COL-C	L Water	Diss. Orthophosphate in Water by Colour	APHA 4500-P PHOSPHORUS
		dures adapted from APHA Method 4500-P "Ph been lab or field filtered through a 0.45 micron	osphorus". Dissolved Orthophosphate is determined membrane filter.
TSS-CL	Water	Total Suspended Solids	APHA 2540 D-Gravimetric
		dures adapted from APHA Method 2540 "Solic pple through a glass fibre filter, and by drying th	s". Solids are determined gravimetrically. Total suspended solids e filter at 104 deg. C.
* ALS test metho	ods may incorporate mo	odifications from specified reference methods t	o improve performance.
The last two lette	ers of the above test co	ode(s) indicate the laboratory that performed ar	alytical analysis for that test. Refer to the list below:
Laboratory Defi	inition Code Labo	ratory Location	

CL ALS

ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA

Chain of Custody Numbers:

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
---------------	--------	-------------------------	--------------------

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS Environmental

www.alsenviro.com

ANALYTICAL CHEMISTRY & TESTING SERVICES

Vancouver BC, 1988 Triur Fort St. John BC, Box 25 Grand Prairie AB, 9595 -Fort McMurray AB, Bay 1 Edmonton AB, 9936 - 671 Calgary AB, Bay 7, 1313 Saskatoon SK, 819 - 58tf

* 604-253-6700

: 780-513-2191

780-437-2311

3 Fax: 403-291-0298 к: 306-668-8383

SEND REPORT TO: CHAIN OF CUSTUDY FORM PAGE OF FERNIE ALPINE RESORT UTILITIES CORPORATION ATTN PATRICK MAJER COMPANY ANALYSIS REQUESTED: ADDRESS: 1505 - 17TH AVENUE SOUTH WEST 1 PROV: ALBERTA CITY: CALGARY POSTAL CODE T2T 0E2 5. . 403 - 256 - 8473 FAX: 403 - 244 - 3774 SAMPLER: Carter Barrett TEL: FARUC – Winter EMS week 5 () 33058 PROJECT NAME AND NO. QUOTE NO ALS CONTACT: Patryk Woyciak PO NO.: @skircr.com \mathbf{X} \boxtimes Coliforms REPORT FORMAT: 27 \mathbf{X} WO# NO3-N ٩ Total P NH3-N DATE / TIME COLLECTED BOD5 Fecal Ortho SAMPLE IDENTIFICATION NOTES (sample specific N02-COD MATRIX TSS E YYYY-MM-DD comments, due dates, etc.) TIME WWTP Influent Routine 10:50 2021-01-11 Χ. 9,200 1 11. Water ÷х £ WWTP Influent BOD Э 10:50 9.2°C 2021-01-11 Water Х 12. Poc 10:50 WWTP Effluent Routine 14 2021-01-11 Water х X х WWTP Effluent BOD 4 2021-01-11 10:50 Water х τ WWTP Effluent Nutrients 5 10:50 2021-01-11 12.800 Water X X , X Х х N 10:50 WWTP Effluent Bacteriological 2021-01-11 Water х 2 Elk River Upstream Routine 7 2021-01-11 10'70 Water X X 1,0 % R ONLY Elk River Upstream Nutrients 10:30 2021-01-11 Water 1.0% х Х Х х Х Elk River Upstream Bacteriological 10:20 2021-01-11 Water-X ÷. hat. 108 USE Elk River @ Outfall Routine 10:55 10 2021-01-11 Water Х х 1.42 LAB T. : 14°C Elk River @ Outfall Nutrients 2021-01-11-10:35 Water X х Х X* .Χ FOR Elk River @ Outfall Bacteriological /2 10:35 2021-01-11 Water х 1.4% 13 Elk River Downstream Routine 2021-01-11 10:40 Water X х 0.09°C 14 2021-01-11 10:40 Elk River Downstream Nutrients Water 0.900 х х х х Х Elk River Downstream Bacteriological 15 2021-01-11 10-40 Water X ÷. 0.9°C • (* *) SPECIFY DATE: 2021-01-11 RECEIVED BY: (surcharge may apply) RELINQUISHED BY: DATE DATE TURN AROUND REQUIRED: 11:30 Carter Barrett TIME: TIME SEND INVOICE TO: DATE RECEIVED BY: RELINQUISHED BY: DATE INVOICE FORMAT: Π TIME: TIME SPECIAL INSTRUCTIONS PLEASE FAX A COPY OF THE RESULTS TO 250-423-4652 OR E-MAIL TO FOR LAB USE ONLY wastewater@skifernie.com Cooler Seal Intact? Sample Temperature: Cooling Method? Frozen? Yes Yes ___No _ N/A Icepacks _lce None

FERNIE ALPINE RESORT UTILITIES CORPORATION ATTN: Patrick Majer 1505 - 17TH AVENUE SW CALGARY AB T2T 0E2 Date Received: 19-JAN-21 Report Date: 25-JAN-21 15:00 (MT) Version: FINAL

Client Phone: 800-258-7669

Certificate of Analysis

Lab Work Order #: L2549356 Project P.O. #: NOT SUBMITTED Job Reference: FARUC - WINTER EMS WEEK 6 C of C Numbers: Legal Site Desc:

May

Patryk Wojciak, B.Sc., P.Chem. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

FARUC - WINTER EMS WEEK 6

L2549356 CONTD.... PAGE 2 of 5 Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2549356-1 WWTP INFLUENT							
Sampled By: Carter Barrett on 18-JAN-21 @ 10:30							
Matrix: Water							
Miscellaneous Parameters							
Biochemical Oxygen Demand	108	DLHC	75	mg/L		19-JAN-21	R5357178
Total Suspended Solids	217	DLHC	5.0	mg/L		24-JAN-21	R5357259
рН	8.05		0.10	pН		19-JAN-21	R5355666
_2549356-2 WWTP EFFLUENT							
Sampled By: Carter Barrett on 18-JAN-21 @ 10:30							
Matrix: Water							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		24-JAN-21	R5357157
Biochemical Oxygen Demand	<2.0		2.0	mg/L		19-JAN-21	R5357178
Chemical Oxygen Demand	15		10	mg/L		20-JAN-21	R5355831
Orthophosphate-Dissolved (as P)	0.183	DLHC	0.010	mg/L		19-JAN-21	R5354317
Coliform Bacteria - Fecal	3		1	CFU/100mL		19-JAN-21	R5355525
Phosphorus (P)-Total	0.257	DLHC	0.025	mg/L		20-JAN-21	R5355117
Total Suspended Solids	<3.0		3.0	mg/L		24-JAN-21	R5357259
рН	8.09		0.10	pН		19-JAN-21	R5355666
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC Nitrate (as N)	39.9	DLHC	0.10	mg/L		19-JAN-21	R5356914
Nitrate+Nitrite Nitrate and Nitrite (as N)	39.9		0.11	mg/L		23-JAN-21	
Nitrite in Water by IC Nitrite (as N)	<0.050	DLHC	0.050	mg/L		19-JAN-21	R5356914
_2549356-3 ELK RIVER UPSTREAM							
Sampled By: Carter Barrett on 18-JAN-21 @ 10:00							
Matrix: Water							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		24-JAN-21	R5357157
Orthophosphate-Dissolved (as P)	<0.0050		0.0050	mg/L		19-JAN-21	R5354317
Coliform Bacteria - Fecal	11		1	CFU/100mL		19-JAN-21	R5355525
Phosphorus (P)-Total	0.0057		0.0050	mg/L		20-JAN-21	R5355117
Total Suspended Solids	<3.0		3.0	mg/L		24-JAN-21	R5357259
pH NO2, NO3 and Sum of NO2/NO3	8.42		0.10	рН		19-JAN-21	R5355666
Noz, NO3 and Sum of NO2/NO3 Nitrate in Water by IC							
Nitrate (as N)	1.92		0.020	mg/L		19-JAN-21	R5356914
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	1.92		0.022	mg/L		23-JAN-21	
Nitrite in Water by IC			0.045			40 1411 04	DESERVICE
Nitrite (as N)	<0.010		0.010	mg/L		19-JAN-21	R5356914
2549356-4 ELK RIVER OUTFALL							
Sampled By: Carter Barrett on 18-JAN-21 @ 09:45							
Matrix: Water							
Miscellaneous Parameters	0.050		0.050				DE0534-5
Ammonia, Total (as N)	<0.050		0.050	mg/L		24-JAN-21	R5357157
Orthophosphate-Dissolved (as P)	0.0414		0.0050	mg/L		19-JAN-21	R5354317
Coliform Bacteria - Fecal	2		1	CFU/100mL		19-JAN-21	R5355525
Phosphorus (P)-Total	0.0443		0.0050	mg/L		20-JAN-21	R5355117
Total Suspended Solids	3.2		3.0	mg/L		24-JAN-21	R5357259

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2549356-4 ELK RIVER OUTFALL							
Sampled By: Carter Barrett on 18-JAN-21 @ 09:45							
Matrix: Water	0.00		0.40			40 1411 04	DEGEEGOO
pH NO2, NO3 and Sum of NO2/NO3	8.28		0.10	рН		19-JAN-21	R5355666
Nitrate in Water by IC							
Nitrate (as N)	5.99		0.020	mg/L		19-JAN-21	R5356914
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	5.99		0.022	mg/L		23-JAN-21	
Nitrite in Water by IC	0.040		0.040				DESEGULA
Nitrite (as N)	<0.010		0.010	mg/L		19-JAN-21	R5356914
L2549356-5 ELK RIVER DOWNSTREAM							
Sampled By: Carter Barrett on 18-JAN-21 @ 09:30							
Matrix: Water Miscellaneous Parameters							
Miscellaneous Parameters Ammonia, Total (as N)	<0.050		0.050	ma/l		24-JAN-21	R5357157
Orthophosphate-Dissolved (as P)	<0.050		0.050	mg/L mg/L		24-JAN-21 19-JAN-21	R5357157 R5354317
Coliform Bacteria - Fecal	<0.0050		0.0050	CFU/100mL		19-JAN-21 19-JAN-21	R5354317 R5355525
Phosphorus (P)-Total	<0.0050		0.0050	mg/L		20-JAN-21	R5355525 R5355117
Total Suspended Solids	8.2		3.0	mg/L		24-JAN-21	R5357259
pH	8.39		0.10	pH		19-JAN-21	R5355666
NO2, NO3 and Sum of NO2/NO3	0.00		0.10			10 0/11 21	10000000
Nitrate in Water by IC							
Nitrate (as N)	1.93		0.020	mg/L		19-JAN-21	R5356914
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	1.93		0.022	mg/L		23-JAN-21	
Nitrite in Water by IC Nitrite (as N)	<0.010		0.010	mg/L		19-JAN-21	R5356914
	<0.010		0.010	iiig/L		19-JAIN-21	R0000914

Sample Parameter Qualifier Key:

Qualifier	Description		
DLHC	Detection Limit Raise	d: Dilution required due to high concentration of	of test analyte(s).
Fest Method R	eferences:		
ALS Test Code	Matrix	Test Description	Method Reference**
BOD-BC-CL	Water	Biochemical Oxygen Demand (BOD)	APHA 5210 B-5 day IncubO2 electrode
oxygen demand dissolved oxyge	(BOD) are determined n meter. Dissolved BO	by diluting and incubating a sample for a spec	ochemical Oxygen Demand (BOD)". All forms of biochemical fied time period, and measuring the oxygen depletion using a nple through a glass fibre filter prior to dilution. Carbonaceous or to incubation.
COD-T-COL-CL	Water	Chemical Oxygen Demand (COD)	APHA 5220 D Colorimetry
Samples are and	alyzed using the closed	I reflux colourimetric method	
FCC-MF-CL	Water	Fecal Coliform Count-MF	APHA 9222D
Coliform bacteria involves an initia	a is enumerated by cult al 24 hour incubation at	turing and colony counting. A known sample vo	brane Filter Technique for Members of the Coliform Group". Jume is filtered through a 0.45 micron membrane filter. The test e growth medium. This method is specific for thermotolerant
N2N3-CALC-CL	Water	Nitrate+Nitrite	CALCULATION
NH3-F-CL	Water	Ammonia by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
			dified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society n of trace levels of ammonium in seawater", Roslyn J. Waston et
NO2-IC-N-CL	Water	Nitrite in Water by IC	EPA 300.1 (mod)
Inorganic anions	s are analyzed by Ion C	hromatography with conductivity and/or UV de	rection.
NO3-IC-N-CL	Water	Nitrate in Water by IC	EPA 300.1 (mod)
Inorganic anions	s are analyzed by Ion C	hromatography with conductivity and/or UV de	rection.
P-T-COL-CL	Water	Total P in Water by Colour	APHA 4500-P PHOSPHORUS
	carried out using proce estion of the sample.	dures adapted from APHA Method 4500-P "Ph	osphorus". Total Phosphorus is determined colourimetrically afte
PH-CL	Water	рН	APHA 4500 H-Electrode
		g a pH electrode. All samples analyzed by this nalysis is recommended for pH where highly a	method for pH will have exceeded the 15 minute recommended ccurate results are needed)
PO4-DO-COL-C	L Water	Diss. Orthophosphate in Water by Colour	APHA 4500-P PHOSPHORUS
		dures adapted from APHA Method 4500-P "Ph been lab or field filtered through a 0.45 micron	osphorus". Dissolved Orthophosphate is determined membrane filter.
TSS-CL	Water	Total Suspended Solids	APHA 2540 D-Gravimetric
		dures adapted from APHA Method 2540 "Solic pple through a glass fibre filter, and by drying th	s". Solids are determined gravimetrically. Total suspended solids e filter at 104 deg. C.
* ALS test metho	ods may incorporate mo	odifications from specified reference methods t	o improve performance.
The last two lette	ers of the above test co	ode(s) indicate the laboratory that performed ar	alytical analysis for that test. Refer to the list below:
Laboratory Defi	inition Code Labo	ratory Location	

CL

ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA

Chain of Custody Numbers:

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
---------------	--------	-------------------------	--------------------

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS Environmental

ANALYTICAL CHEMISTRY & TESTING SERVICES

www.alsenviro.com

Calgary AB, Bay 7, 1313 - 44th Avenue NE, T2E Saskatoon SK, 819 - 58th Street East, S7K 6X5, CHAIN OF CUE

Fort St. John BC, Box 256, 9831 - 98A Avenue, V

Grand Prairie AB, 9595 - 111 Street, T8V 5W1, 1

Fort McMurray AB, Bay 1, 245 Macdonald Cr, T9 Edmonton AB, 9936 - 67th Avenue, T6E 0P5, Te

Vancouver BC, 1988 Triumph Street, V5L 1K5, Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253-6700

L2549356-COFC

SE	D REPOR	RT TO:					С	HAIN O	FCL	JE .												PAGE	OF	
co	MPANY:	FERNIE A	ALPINE RESORT	UTILITIES CORP	ORATION	ATT		CK MAJER	1	ANAI	LYSIS	S REC	UES	TED	:			•						٦
ADI	RESS:	1505 - 17	TH AVENUE SO	UTH WEST									1	Τ	Τ		ŀ							1
СІТ	Y:	CALGAR	Y	PROV: ALBE	RTA	POSTAL CODE	E: T2T 0E	2									1							
TEL		403 - 256	- 8473	FAX: 403 -	244 - 3774	SAMPLER	Carter I	Barrett					Ą	:			i i					1		
PRO	JECT NA	ME AND NO .:	FARUC - Win	ter EMS week 6		QUOTE NO	033	8205									6 A.		: 1			· ·		
РО	NO.:			ALS CONTACT	Patryk Woyciak	(·				Ψ.	1				
REF	ORT FOR	MAT:			- 1\/1	p naje i Ciskir	сг.сот			SE														
 .	WO#						-					- -	6	_		-					•			
:	·		SAMPLE IDENTIF	ICATION	YYYY-MM-DD	TIME	-	MATRIX			2	Ortho	Total I	NH3-N	N-EON	NO2-N	BOD5	CO				NOTES (samp comments, due		- Water
		/ WWTP Int	fluent Routine		2021-01-18	10:30	-	Water			- <u>-</u> x x		F	Z	Z	z	ă	<u>ŏ</u>		- <u> </u>	+	(0.7		temp.
					2021-01-18	10:30		Water			<u> </u>						X							$(^{\circ} \subset)$
۲.			fluent Routine	?	2021-01-18	10:30		Water	· .	+	x x	-		-	┼──	-	·	X				10.7	·	
	2 (WWTP Eff	fluent BOD L	у <u></u> Ч	2021-01-18	10:30		Water	<u>··</u>	+-		· 	+				x	$\hat{+}$		-	+	12.2		
·	<u> </u>		fluent Nutrients	5	2021-01-18	10:30		Water	-+	-		×	x	x	x	x			_		+			
	* .		fluent Bacteriolog		2021-01-18	(0:30	1	Water	×	;	+	-		+					┿		┼─┤	<u> </u>		
	•	_/	Jpstream Routine		2021-01-18	10:00		Water	· · ·	;	< x			┢──	<u> </u>		•				┼╌╂	0.5	<u> </u>	
Σ	-51	Elk River L	Jpstream Nutrient	ts P	2021-01-18	10:00		Water			- <u> </u>	X	x	X	x	x					┝╌╉	<u> </u>		
FOR LAB USE ONLY		Elk River L	Jpstream Bacteric	plogical 9	2021-01-18	10:00		Water	X				<u>† </u>								+ .			× .
В		Elk River @	D Outfall Routine	10	2021-01-18	9:45		Water		×		<u> </u> .	1							+	╞─┨		٠.	0
ABI	4 (Elk River @	Outfall Nutrient	s //	2021-01-18	1:45	1	Water				X	x	x	x	x			1. I.	1	┼╍╌╂	<u> </u>		ų
R L		Elk River @	D Outfall Bacterio	logical /2	2021-01-18	9:45		Water	X		1		1		ļ					-		11		•
С		Elk River D	ownstream Rout	ine 13	2021-01-18	9:30	a.	Water		. x	x x						7			1		Ū,	55	
	5.	Elk River D	ownstream Nutri	ents 14	2021-01-18	1:30		Water			1	X	x	X	x	x			+	†	++			*
		Elk River D	ownstream Bacte	eriological/5	2021-01-18	9:30	\$÷	Water	X											1.	1.1	((
х —			w.t																					
					-12 - 1 ⁰	- 1. 		·`.	·		-		. 				·							
										_	<u> </u>	ļ												
					•			1,2 ° ° ° ° 	-							· .		<u> </u>		ļ.,				
		REQUIRED:	•R		SPECIFY DATE:		(surcharge	e may apply)			REL	INQUI	SHED	BY:		D4	TE:	2021	-01-18	RECI	EIVÊD B	BY: DATE:	15	
											Car	ter Ba	rrett				ME:		15		Th	TIME:	MA-	
			25	<u>АМ</u>	וקונ		R				REL	INQUI	SHED	BY:		DA	TE:			RECI	ENED B	DATE:		
سنسم						400 4050 05 5					FO	RLA	21101		<u> </u>	TI	ME:					TIME:		
0.20			wastewater@sl	A COPY OF THE R kifernie.com	LOULIS 10 250	-423-4652 OR E	=-mail to	J				ler Sea				Samol	Tom	erature	1	or 1	Coclin-	Mothod?		
												Yes _				Frozen		Yes	No	Ň	-) Method? backs Ice	None	

G:/QUALITY.00_DOCUMENTS/10_AUTHORIZED/FORMS/CoC for ALS EMS.xls

FERNIE ALPINE RESORT UTILITIES CORPORATION ATTN: Patrick Majer 1505 - 17TH AVENUE SW CALGARY AB T2T 0E2 Date Received: 23-FEB-21 Report Date: 01-MAR-21 14:49 (MT) Version: FINAL

Client Phone: 800-258-7669

Certificate of Analysis

Lab Work Order #: L2560009 Project P.O. #: NOT SUBMITTED Job Reference: WASTEWATER - FEBRUARY 2021 MONTHLY EMS C of C Numbers: Legal Site Desc:

Mingl

Patryk Wojciak, B.Sc., P.Chem. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

.2560009-1 WWTP INFLUENT				Units	Extracted	Analyzed	Batch
Sampled By: Carter Barrett on 22-FEB-21 @ 13:45							
Matrix: Water							
Miscellaneous Parameters							
Biochemical Oxygen Demand	106	DLHC	20	mg/L		23-FEB-21	R5394883
Total Suspended Solids	159		3.0	mg/L		24-FEB-21	R5390556
pH	7.86		0.10	pH		23-FEB-21	R5388383
2560009-2 WWTP EFFLUENT							
Sampled By: Carter Barrett on 22-FEB-21 @ 13:45							
Matrix: Water							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		24-FEB-21	R5391017
Biochemical Oxygen Demand	<2.0		2.0	mg/L		23-FEB-21	R5394883
Chemical Oxygen Demand	<10		10	mg/L		24-FEB-21	R5388823
Orthophosphate-Dissolved (as P)	0.161	DLHC	0.010	mg/L		23-FEB-21	R5387316
Coliform Bacteria - Fecal	2		1	CFU/100mL		23-FEB-21	R5388937
Phosphorus (P)-Total	0.203	DLHC	0.010	mg/L		24-FEB-21	R5387956
Total Suspended Solids	<3.0		3.0	mg/L		24-FEB-21	R5390556
рН	7.95		0.10	pН		23-FEB-21	R5388383
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC							
Nitrate (as N)	39.2	DLHC	0.10	mg/L		23-FEB-21	R5388217
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	39.2		0.11	mg/L		24-FEB-21	
Nitrite in Water by IC Nitrite (as N)	<0.050	DLHC	0.050	mg/L		23-FEB-21	R5388217
	<0.050	DENO	0.050	iiig/∟		23-16-21	K0300217

Sample Parameter Qualifier Key:

Qualifier	Description		
DLHC	Detection Limit Raise	d: Dilution required due to high conce	ntration of test analyte(s).
ИS-B	Matrix Spike recovery	v could not be accurately calculated du	ue to high analyte background in sample.
est Method R	eferences:		
ALS Test Code	Matrix	Test Description	Method Reference**
BOD-BC-CL	Water	Biochemical Oxygen Demand (BOE) APHA 5210 B-5 day IncubO2 electrode
oxygen demand dissolved oxyge	(BOD) are determined n meter. Dissolved BO	by diluting and incubating a sample for	10B - "Biochemical Oxygen Demand (BOD)". All forms of biochemical or a specified time period, and measuring the oxygen depletion using a g the sample through a glass fibre filter prior to dilution. Carbonaceous mple prior to incubation.
COD-T-COL-CL	Water	Chemical Oxygen Demand (COD)	APHA 5220 D Colorimetry
Samples are and	alyzed using the closed	reflux colourimetric method	
FCC-MF-CL	Water	Fecal Coliform Count-MF	APHA 9222D
Coliform bacteria	a is enumerated by cult al 24 hour incubation at	turing and colony counting. A known s	22 "Membrane Filter Technique for Members of the Coliform Group". ample volume is filtered through a 0.45 micron membrane filter. The test ppropriate growth medium. This method is specific for thermotolerant rria level.
N2N3-CALC-CL	Water	Nitrate+Nitrite	CALCULATION
NH3-F-CL	Water	Ammonia by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
			lures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society ermination of trace levels of ammonium in seawater", Roslyn J. Waston ef
NO2-IC-N-CL	Water	Nitrite in Water by IC	EPA 300.1 (mod)
norganic anions	are analyzed by lon C	hromatography with conductivity and/	or UV detection.
NO3-IC-N-CL	Water	Nitrate in Water by IC	EPA 300.1 (mod)
norganic anions	are analyzed by Ion C	hromatography with conductivity and/	or UV detection.
P-T-COL-CL	Water	Total P in Water by Colour	APHA 4500-P PHOSPHORUS
	carried out using proce estion of the sample.	dures adapted from APHA Method 45	00-P "Phosphorus". Total Phosphorus is determined colourimetrically after
PH-CL	Water	рН	APHA 4500 H-Electrode
		g a pH electrode. All samples analyze nalysis is recommended for pH where	d by this method for pH will have exceeded the 15 minute recommended highly accurate results are needed)
PO4-DO-COL-C	L Water	Diss. Orthophosphate in Water by 0	Colour APHA 4500-P PHOSPHORUS
		dures adapted from APHA Method 45 been lab or field filtered through a 0.49	00-P "Phosphorus". Dissolved Orthophosphate is determined 5 micron membrane filter.
TSS-CL	Water	Total Suspended Solids	APHA 2540 D-Gravimetric
		dures adapted from APHA Method 25 nple through a glass fibre filter, and by	40 "Solids". Solids are determined gravimetrically. Total suspended solids drying the filter at 104 deg. C.
ALS test metho	ods may incorporate mo	odifications from specified reference n	nethods to improve performance.

Laboratory Deminition Code	Laboratory Eccation
CL	ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA
Chain of Custody Numbers:	

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
---------------	--------	------------------	--------------------

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS Environmental

www.alsenviro.com

ANALYTICAL CHEMISTRY & TESTING SERVICES

Vancouver BC, 1988 Triumph Street, V5L 1K5, Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253-6700 Fort St. John BC, Box 256 Grand Prairie AB, 9595 - 1 Fort McMurray AB, Bay 1, Edmonton AB, 9936 - 67ti Calgary AB, Bay 7, 1313 -Saskatoon SK, 819 - 58th

Tel: 250-261-5517 Fax: 250-261-5587

: 780-437-2311 78 Fax: 403-291-0298 ax: 306-668-8383

'x: 780-513-2191

SEND	REPORT TO	0:					Ci									_						PAGE	(DF	-7
	PANY:	FERNIE AL	PINE RESORT I	UTILITIES CORPO	RATION	ATTN:	PATRICK MAJER	AN/	ALYS		EQU	IEST	ED:	· · · • · ·						<u></u> r	r				_
	RESS	1505 - 17TH	AVENUE SOU	TH WEST												· ·				•					
CITY:		CALGARY		PROV: ALBER	ТА	POSTAL CODE:																			
TEL:		403 - 256 - 8	8473	FAX: 403 - 24			Carter Barrett																		
		AND NO.:	Wastewater -Fe	ebruary 2021 Month		QUOTE NO:	Q 33058			.															
		1		ALS CONTACT:	Patryk Wojciak													.							
					AIL - ADDRES	emajer@skirc	r.com	٤										· ·							
REPC	ORT FORMAT	.T:	☐ FAX					Coliforms		• 3.										· `·					
	WO#	T				COLLECTED		° ⊒ °			е Б	Ч	N-S	Z.	2-N	192	Ō							e specific	1
·			SAMPLE IDENTIFI	ICATION	YYYY-MM-DD	TIME	MATRIX	Fecal	TSS	Hd	Ortho	Total	NH3-N	NO3-N	NO2-N	BOD5	COD							lates, etc.	<u> </u>
T	. /	WWTP Influ	uent Routine		2021-02-22	13:45	Water	Γ	X	x								- [~] .	<u> </u>			7.7	V		
ŀ	-+	WWTP Influ			2021-02-22	13:49	Water									х		L	L			_	.		
ŀ		WWTP Eff	luent Routine		2021-02-22	13:45	Water		х	X								·	<u> </u>			//~0	PC	<u> </u>	
ł	7	WWTP Eff	uent BOD		2021-02-22	13:45	Water									X		<u> </u>	ļ.,						
f		WWTP Eff	luent Nutrients		2021-02-22	13:45	Water				X	X	. ×	X	X			L.	<u> </u>						
	1	WWTP Eff	luent Bacteriolog	lical	2021-02-22	13:45	Water	X		<u> </u>		1					ļ		<u> </u>						
										<u> -</u>					ļ										•
ΣĪ								\bot			<u> </u>		 					<u> </u>							
NLY								<u> </u>		1	 			<u> </u>	<u> </u>		<u> </u>	Ļ	┣						
LAB USE						<u></u>		\bot	<u> </u>	<u> </u>	 	<u> </u>	L		<u> </u>					<u> </u>	-				
AB						1	· · · ·	_	-	<u> </u>	<u> </u>	 	<u> </u>	· ·	· ·	 	_	<u> </u>	ļ						
Å L						<u> </u>	<u> </u>	 	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>	┞	-	<u> </u>						
FOR								_	<u> </u>	<u> </u>	·				1° 4.4	<u>k</u>		-	-						
ſ									1	<u> </u>			–					\vdash		╄					
	· · · · · ·			an Maranagira 				<u> </u>		-		 	<u> </u>	···		<u> </u>	<u> </u>	1		╂					
					<u></u>	<u></u>		<u> </u>	-	+	+					┼──	<u> </u>	–	╂						
·			<u></u>		ļ			-			<u> </u>				1	<u> · ;</u>	·				+-	<u>-</u>			
· .								_				+	╂──			+	-	-			┼				
			·	and the state of the	_	· · ·	· · · · · · · · · · · · · · · · · · ·	_	a	· · · ·			<u> </u>	+		+			+	+	+	┣			
		<u></u>			<u> </u>	4				+	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	20	121-0	2-22	REC			DATE:	1	72
TURI	N AROUND I	REQUIRED:	ROUTI		SPECIFY DATE		_ (surcharge may apply)				LINQU rter Ba) BY:		1	DATE: TIME:		4:0	15	REC	5		TIME:	-6	7
SEN		TO:	SAME	AS REPOR DIF	FERENT FRO	M REPORT (p	rovide details			REL	LINQU	ISHE	DBY:		<u> </u>	DATE:				REC	EIVED	<u>р вү:</u> [DATE:		
INVC		λ Τ:			F 🗌 F/	AX										TIME:						· · · ·	TIME:		
	CIAL INSTRU		PLEASE FAX	A COPY OF THE	RESULTS TO 25	50-423-4652 OR	E-MAIL TO				RLA			NLY	1-			ś	\leq	Pr	10.	ing Mathe	12		
			wastewater@s	skiternie.com							oler Se Yes			N/A		nple Te	•			P _C		ing Method		None	
											Yes	Nc) <u> </u>	_N/A	I⊦roz	en /	Ye	s	NO	<u>`</u>	ا ا	cepacks	ice	r	10110

FERNIE ALPINE RESORT UTILITIES CORPORATION ATTN: Patrick Majer 1505 - 17TH AVENUE SW CALGARY AB T2T 0E2 Date Received: 30-MAR-21 Report Date: 08-APR-21 11:10 (MT) Version: FINAL

Client Phone: 800-258-7669

Certificate of Analysis

Lab Work Order #: L2571523 Project P.O. #: NOT SUBMITTED Job Reference: FARUC - SPRING EMS WEEK 1 C of C Numbers: Legal Site Desc:

Mingl

Patryk Wojciak, B.Sc., P.Chem. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

FARUC - SPRING EMS WEEK 1

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2571523-1 WWTP INFLUENT							
Sampled By: CARTER BARRETT on 29-MAR-21 @ 10:	15						
Matrix: WATER							
Miscellaneous Parameters							
Biochemical Oxygen Demand	93	DLHC	20	mg/L		30-MAR-21	R5418978
Total Suspended Solids	140		3.0	mg/L		31-MAR-21	R5417604
рН	7.35		0.10	pН		06-APR-21	R5420823
_2571523-2 WWTP EFFLUENT							
Sampled By: CARTER BARRETT on 29-MAR-21 @ 10	30						
Matrix: WATER							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		06-APR-21	R5420384
Biochemical Oxygen Demand	<2.0		2.0	mg/L		30-MAR-21	R5418978
Chemical Oxygen Demand	<10		10	mg/L		30-MAR-21	R5417551
Orthophosphate-Dissolved (as P)	0.403	DLHC	0.025	mg/L		31-MAR-21	R5417681
Coliform Bacteria - Fecal	51		1	CFU/100mL		30-MAR-21	R5418176
Phosphorus (P)-Total	0.413	DLHC	0.050	mg/L		06-APR-21	R5419791
Total Suspended Solids	<3.0		3.0	mg/L		05-APR-21	R5419565
pH	7.83		0.10	pН		06-APR-21	R5420823
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC							
Nitrate (as N)	17.5		0.020	mg/L		31-MAR-21	R5418891
Nitrate+Nitrite Nitrate and Nitrite (as N)	17.5		0.022	mg/L		03-APR-21	
Nitrite in Water by IC	17.5		0.022	ing/L		03-AI 11-21	
Nitrite (as N)	<0.010		0.010	mg/L		31-MAR-21	R5418891
L2571523-3 ELK RIVER UPSTREAM							
Sampled By: CARTER BARRETT on 29-MAR-21 @ 09:	45						
Matrix: WATER							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		06-APR-21	R5420384
Orthophosphate-Dissolved (as P)	<0.0050		0.0050	mg/L		31-MAR-21	R5417681
Coliform Bacteria - Fecal	7		1	CFU/100mL		30-MAR-21	R5418176
Phosphorus (P)-Total	0.0109		0.0050	mg/L		06-APR-21	R5419791
Total Suspended Solids	8.9		3.0	mg/L		31-MAR-21	R5417604
pH	8.19		0.10	pН		06-APR-21	R5420823
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC							
Nitrate (as N)	1.91		0.020	mg/L		31-MAR-21	R5418891
Nitrate+Nitrite	4.04		0.000	~~~~/l		02 400 24	
Nitrate and Nitrite (as N) Nitrite in Water by IC	1.91		0.022	mg/L		03-APR-21	
Nitrite (as N)	<0.010		0.010	mg/L		31-MAR-21	R5418891
_2571523-4 ELK RIVER OUTFALL							
Sampled By: CARTER BARRETT on 29-MAR-21 @ 09:	30						
Matrix: WATER							
Maux. World Marketers							
Ammonia, Total (as N)	<0.050		0.050	mg/L		06-APR-21	R5420384
Orthophosphate-Dissolved (as P)	0.0130		0.0050	mg/L		31-MAR-21	R5417681
Coliform Bacteria - Fecal	6		1	CFU/100mL		30-MAR-21	R5418176
Phosphorus (P)-Total	0.0229		0.0050	mg/L		06-APR-21	R5419791
Total Suspended Solids	9.5		3.0	mg/L		31-MAR-21	R5417604
	0.0		0.0				

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
_2571523-4 ELK RIVER OUTFALL							
Sampled By: CARTER BARRETT on 29-MAR-21 @ (9:30						
Matrix: WATER							
pH	8.04		0.10	pН		06-APR-21	R5420823
NO2, NO3 and Sum of NO2/NO3	0.04		0.10			00 AI 1021	113420023
Nitrate in Water by IC							
Nitrate (as N)	0.078		0.020	mg/L		31-MAR-21	R5418891
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	0.078		0.022	mg/L		03-APR-21	
Nitrite in Water by IC	0.010		0.040			21 MAD 21	DE 440004
Nitrite (as N)	<0.010		0.010	mg/L		31-MAR-21	R5418891
2571523-5 ELK RIVER DOWNSTREAM							
Sampled By: CARTER BARRETT on 29-MAR-21 @ 1	0:00						
Matrix: WATER							
Miscellaneous Parameters	-0.050		0.050	ma/l		06-APR-21	D5400004
Ammonia, Total (as N)	< 0.050		0.050	mg/L			R5420384
Orthophosphate-Dissolved (as P)	<0.0050		0.0050	mg/L		31-MAR-21	R5417681
Coliform Bacteria - Fecal	11		1	CFU/100mL		30-MAR-21	R5418176
Phosphorus (P)-Total	0.0119		0.0050	mg/L		06-APR-21	R5419791
Total Suspended Solids	6.5		3.0	mg/L		31-MAR-21	R5417604
	8.19		0.10	рН		06-APR-21	R5420823
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC Nitrate (as N)	1.92		0.020	mg/L		31-MAR-21	R5418891
Nitrate+Nitrite	1.52		0.020	iiig/L		31-MAR-21	110410031
Nitrate and Nitrite (as N)	1.92		0.022	mg/L		03-APR-21	
Nitrite in Water by IC				5			
Nitrite (as N)	<0.010		0.010	mg/L		31-MAR-21	R5418891

Sample Parameter Qualifier Key:

Qualifier	Description					
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).					
est Method Re	eferences:					
ALS Test Code	Matrix	Test Description	Method Reference**			
BOD-BC-CL	Water	Biochemical Oxygen Demand (BOD)	APHA 5210 B-5 day IncubO2 electrode			
oxygen demand (dissolved oxygen	(BOD) are determined meter. Dissolved BC	d by diluting and incubating a sample for a spec	iochemical Oxygen Demand (BOD)". All forms of biochemical cified time period, and measuring the oxygen depletion using a mple through a glass fibre filter prior to dilution. Carbonaceous or to incubation.			
COD-T-COL-CL Water		Chemical Oxygen Demand (COD)	APHA 5220 D Colorimetry			
Samples are ana	lyzed using the close	d reflux colourimetric method				
FCC-MF-CL	Water	Fecal Coliform Count-MF	APHA 9222D			
Coliform bacteria involves an initial	is enumerated by cu 24 hour incubation a	Ituring and colony counting. A known sample v	nbrane Filter Technique for Members of the Coliform Group". olume is filtered through a 0.45 micron membrane filter. The test te growth medium. This method is specific for thermotolerant			
N2N3-CALC-CL	Water	Nitrate+Nitrite	CALCULATION			
NH3-F-CL	Water	Ammonia by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC			
			odified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society on of trace levels of ammonium in seawater", Roslyn J. Waston et			
NO2-IC-N-CL	Water	Nitrite in Water by IC	EPA 300.1 (mod)			
Inorganic anions	are analyzed by Ion (Chromatography with conductivity and/or UV de	etection.			
NO3-IC-N-CL	-CL Water Nitrate in Water by IC EPA		EPA 300.1 (mod)			
Inorganic anions	are analyzed by Ion (Chromatography with conductivity and/or UV de	etection.			
P-T-COL-CL Water		Total P in Water by Colour	APHA 4500-P PHOSPHORUS			
	carried out using procestion of the sample.	edures adapted from APHA Method 4500-P "Pl	nosphorus". Total Phosphorus is determined colourimetrically afte			
PH-CL	Water	рН	APHA 4500 H-Electrode			
		ng a pH electrode. All samples analyzed by this analysis is recommended for pH where highly a	method for pH will have exceeded the 15 minute recommended accurate results are needed)			
PO4-DO-COL-CL	Water	Diss. Orthophosphate in Water by Colour	APHA 4500-P PHOSPHORUS			
		edures adapted from APHA Method 4500-P "P been lab or field filtered through a 0.45 micron	nosphorus". Dissolved Orthophosphate is determined membrane filter.			
TSS-CL	Water	Total Suspended Solids	APHA 2540 D-Gravimetric			
		edures adapted from APHA Method 2540 "Solion nple through a glass fibre filter, and by drying t	ds". Solids are determined gravimetrically. Total suspended solids he filter at 104 deg. C.			
* ALS test method	ds may incorporate m	odifications from specified reference methods	to improve performance.			
The last two lette	ers of the above test c	ode(s) indicate the laboratory that performed a	nalytical analysis for that test. Refer to the list below:			
Laboratory Defir	nition Code Labo	pratory Location				

CL

ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA

Chain of Custody Numbers:

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
---------------	--------	------------------	--------------------

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS Environmental

ANALYTICAL CHEMISTRY & TESTING SERVICES

www.alsenviro.com

Vancouver BC, 1988 Triumph Street, V5L 1K5, Tel: 604-253-4188 Tr⁻⁻⁻ Fort St. John BC, Box 256, 9831 - 98A Avenue, V1J 6W7, Tel: 250-Grand Prairie AB, 9695 - 111 Street, T8V 5W1, Tel: 780-539-5196 ¹ Fort McMurray AB, Bay 1, 245 Macdonald Cr, T9H 4B5, Tel: 780-79 Edmonton AB, 9936 - 67th Avenue, T6E 0P5, Tel: 780-413-5227 Tc Calgary AB, Bay 7, 1313 - 44th Avenue NE, T2E 6L5, Tel: 403-291-5 Saskatoon SK, 819 - 58th Street East, S7K 6X5, Tel: 306-668-8370

L2571523-COFC

SEN	D REPORT T	0:					CHAIN OF	CUS	STO	DY	<u>' FC</u>)Rn	Π		-							PAGE	OF
CON	PANY:	FERNIE AL	PINE RESORT	UTILITIES CORPO	RATION	ATTN:	PATRICK MAJER	AN	ALY	SIS F	REQI	UES	TED:										
ADD	RESS:	1505 - 17TH	AVENUE SOL	JTH WEST				1.12															
CITY	·:	CALGARY		PROV: ALBER	RTA	POSTAL CODE:	T2T 0E2					- ÷	· ·						-				
TEL:		403 - 256 - 8	8473	FAX: 403 - 2	44 - 3774		Carter Barrett						1	1	ł			a - 1		2			
PRO	JECT NAME	AND NO.:	FARUC - Spri	ng EMS week 1		QUOTE NO:		1		÷.,].			1 ×		- 1 - 		• a • 2			
PON	10.:			ALS CONTACT:	Patryk Woyciak		···	1						ŀ.						• •			
		<u></u>			All - ADDRES	omajer@skirc	r.com	5	1	·		Ι.]								
REP	ORTFORMA	Τ:		_		_	·····	Coliforms		÷ •,		Ì.						- 14 - 14					
	WO#	T	☐ FAX		PDF	OTHER:	r	S.			4			_		н							
		s	SAMPLE IDENTIF	ICATION		COLLECTED	MATRIX	Fecal	TSS	_	Ortho	Total F	NH3-N	NO3-N	NO2-N	BOD5	G						imple specific ue dates, etc.)
			ont Doutino		YYYY-MM-DD	TIME		<u> </u>	-	Ha	ō	μμ	Ž	ž	ž	ă	Ŭ				_	<u> </u>	· · ·
		WWTP Influ	<u> </u>	y	2021-03-29	6:15	Water		X.	X	-		ļ				<u> </u>	· .	*.	<u>.</u>	<u> </u>	7.400	<u> </u>
	· · · · · · ·	WWTP Influ	<u>d</u>		2021-03-29	10:15	Water			<u> </u>						X				<u> </u>	<u> </u>	17.004	0
			ent Routine		2021-03-29	10:30	Water		X	X							1 X 1				<u> </u>	10.50	<u> </u>
		WWTP Efflu			2021-03-29	10:30	Water	<u> </u>		L				* 1	<u> </u>	X	<u> </u>			ļ	<u> </u>	ļ	
			ent Nutrients	5	2021-03-29	10:30	Water				X	X	X	. X	X							L	
			ent Bacteriolog		2021-03-29	10:30	Water	X									L		1				· · · · · · · · · · · · · · · · · · ·
		r (stream Routine		2021-03-29	9:45	Water		X	X		<u> </u>									<u> </u>	O. ¥°C	
FOR LAB USE ONLY			stream Nutrien		2021-03-29	4:45	Water				X	X	X	х	Х								
ō		Elk River Up	stream Bacterio		2021-03-29	9:45	Water	X				•											
USI		Elk River @	Outfall Routine	10	2021-03-29	4:30	Water		X	X											L	0.500	2
AB		Elk River @	Outfall Nutrient	is //	2021-03-29	9:30	Water		<u> </u>		X	Χ.	X	Х	X								
2		Elk River @	Outfall Bacteric	plogical / 🤇	2021-03-29	4:30	Water	х															
л С		Elk River Do	wnstream Rout	tine 3	2021-03-29	10:00	Water		X	X				· · ·			**					0.500	2
		Elk River Do	wnstream Nutri	ients /4	2021-03-29	10:00	Water				Х	х	X	х	х								
		Elk River Do	wnstream Bact	eriological /5	2021-03-29	(d:00	Water	X		1 1		<u>, 8</u> 1											
				· .																			
								,		, ¹¹ .				94 1						•			
													, ,										
										s, , ,			÷	1. .	÷								
					ý.,														_				-1
			ROUTI	NE ORUSH	SPECIFY DATE:		(surcharge may apply)	4		RELI	NQUIS	SHED	BY:		D	ATE:	2	021-0	3-29	RECE	IVED	BY: DATE:	3/20
TUR	N AROUND R	EQUIRED:	Ū							Carte	er Bar	rett				IME:		50			M	TIME:	0942
SEN	D INVOICE TO	D:		AS REPOR DIF	FERENT FROM	AREPORT (pro	ovide details			REL	NQUIS	SHED	BY:		· D	ATE:				RECE	IVED	*+	260
INVC	CE FORMAT	r:		OPY 🗌 PDF	: 🗍 FA	x										IME:						TIME	- 4° 0
SPE	CIAL INSTRU	CTIONS:		A COPY OF THE R	ESULTS TO 250	-423-4652 OR E	-MAIL TO			FOR	LAB	US	E ON	LY			11		ليبي	• •			
			wastewater@s	kifernie.com							er Seal					le Ten			_	C	Coolir	ng Method?	
										Y	es	No	N	/A	Froze	n?	Yes	N	0		lc	epacksice	None

G:/QUALITY/00_DOCUMENTS/10_AUTHORIZED/FORMS/CoC for ALS EMS.xls

FERNIE ALPINE RESORT UTILITIES CORPORATION ATTN: Patrick Majer 1505 - 17TH AVENUE SW CALGARY AB T2T 0E2 Date Received: 06-APR-21 Report Date: 13-APR-21 16:41 (MT) Version: FINAL

Client Phone: 800-258-7669

Certificate of Analysis

Lab Work Order #: L2573310 Project P.O. #: NOT SUBMITTED Job Reference: FARUC - SPRING EMS WEEK 2 C of C Numbers: Legal Site Desc:

May

Patryk Wojciak, B.Sc., P.Chem. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

FARUC - SPRING EMS WEEK 2

L2573310 CONTD.... PAGE 2 of 5 Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2573310-1 WWTP INFLUENT							
Sampled By: CARTER BARRETT on 05-APR-21 @ 10:	00						
Matrix: WATER							
Miscellaneous Parameters							
Biochemical Oxygen Demand	90	DLHC	20	mg/L		06-APR-21	R5422598
Total Suspended Solids	126		3.0	mg/L		07-APR-21	R5420948
pH	7.20		0.10	pН		13-APR-21	R5423109
L2573310-2 WWTP EFFLUENT							
Sampled By: CARTER BARRETT on 05-APR-21 @ 10:	00						
Matrix: WATER							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		10-APR-21	R5422051
Biochemical Oxygen Demand	<2.0		2.0	mg/L		06-APR-21	R5422598
Chemical Oxygen Demand	12		10	mg/L		06-APR-21	R5420201
Orthophosphate-Dissolved (as P)	0.135	DLHC	0.010	mg/L		06-APR-21	R5420009
Coliform Bacteria - Fecal	5		1	CFU/100mL		06-APR-21	R5420486
Phosphorus (P)-Total	0.140	DLHC	0.010	mg/L		09-APR-21	R5421519
Total Suspended Solids	<3.0		3.0	mg/L		07-APR-21	R5420948
pH	7.70		0.10	pН		13-APR-21	R5423109
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC Nitrate (as N)	21.5	DLHC	0.10	mg/L		07-APR-21	R5421758
Nitrate+Nitrite Nitrate and Nitrite (as N)	21.5		0.11	mg/L		09-APR-21	
Nitrite in Water by IC				5			
Nitrite (as N)	<0.050	DLHC	0.050	mg/L		07-APR-21	R5421758
L2573310-3 ELK RIVER UPSTREAM							
Sampled By: CARTER BARRETT on 05-APR-21 @ 09:	30						
Matrix: WATER							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		10-APR-21	R5422051
Orthophosphate-Dissolved (as P)	<0.0050		0.0050	mg/L		06-APR-21	R5420009
Coliform Bacteria - Fecal	2		1	CFU/100mL		06-APR-21	R5420486
Phosphorus (P)-Total	0.0132		0.0050	mg/L		09-APR-21	R5421519
Total Suspended Solids	4.3		3.0	mg/L		07-APR-21	R5420948
pH	8.15		0.10	рН		13-APR-21	R5423109
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC	0.40		0.000			07 400 04	DE 404750
Nitrate (as N)	2.19		0.020	mg/L		07-APR-21	R5421758
Nitrate+Nitrite Nitrate and Nitrite (as N)	2.19		0.022	mg/L		09-APR-21	
Nitrite in Water by IC	2.19		0.022	ing/∟		03-AI 10-21	
Nitrite (as N)	<0.010		0.010	mg/L		07-APR-21	R5421758
_2573310-4 ELK RIVER OUTFALL							
Sampled By: CARTER BARRETT on 05-APR-21 @ 09:	45						
Matrix: WATER							
Maurix. WATER Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		10-APR-21	R5422051
Orthophosphate-Dissolved (as P)	0.0123		0.0050	mg/L		06-APR-21	R5420009
Coliform Bacteria - Fecal	<1		1	CFU/100mL		06-APR-21	R5420486
Phosphorus (P)-Total	0.0207		0.0050	mg/L		09-APR-21	R5421519
Total Suspended Solids	4.5		3.0	mg/L		07-APR-21	R5420948
	4.0		5.0	mg/∟			110420340

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2573310-4 ELK RIVER OUTFALL							
Sampled By: CARTER BARRETT on 05-APR-21 @ 09	.45						
Matrix: WATER	.45						
pH	8.01		0.10	рН		13-APR-21	R5423109
NO2, NO3 and Sum of NO2/NO3	0.01		0.10	pri		13-AF N-21	K0420109
Nitrate in Water by IC							
Nitrate (as N)	1.08		0.020	mg/L		07-APR-21	R5421758
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	1.08		0.022	mg/L		09-APR-21	
Nitrite in Water by IC	0.040		0.040				DE 404750
Nitrite (as N)	<0.010		0.010	mg/L		07-APR-21	R5421758
_2573310-5 ELK RIVER DOWNSTREAM							
Sampled By: CARTER BARRETT on 05-APR-21 @ 09	:50						
Matrix: WATER							
Miscellaneous Parameters	0.050		0.050				DE 400051
Ammonia, Total (as N)	< 0.050		0.050	mg/L		10-APR-21	R5422051
Orthophosphate-Dissolved (as P)	<0.0050		0.0050	mg/L		06-APR-21	R5420009
Coliform Bacteria - Fecal	4		1	CFU/100mL		06-APR-21	R5420486
Phosphorus (P)-Total	0.0112		0.0050	mg/L		09-APR-21	R5421519
Total Suspended Solids	7.1		3.0	mg/L		07-APR-21	R5420948
рН	8.13		0.10	рН		13-APR-21	R5423109
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC	0.40		0.000				DE404750
Nitrate (as N)	2.12		0.020	mg/L		07-APR-21	R5421758
Nitrate+Nitrite Nitrate and Nitrite (as N)	2.12		0.022	mg/L		09-APR-21	
Nitrite in Water by IC	2.12		0.022	iiig/E		00741121	
Nitrite (as N)	<0.010		0.010	mg/L		07-APR-21	R5421758
	1						1

Sample Parameter Qualifier Key:

Test Method Referen ALS Test Code BOD-BC-CL This analysis is carried of oxygen demand (BOD) dissolved oxygen meter BOD (CBOD) is determine COD-T-COL-CL Samples are analyzed u FCC-MF-CL This analysis is carried of Coliform bacteria is enu involves an initial 24 hor bacteria (Fecal) and is u N2N3-CALC-CL NH3-F-CL This analysis is carried of of Chemistry, "Flow-inje	Ces: Matrix Water out using proc are determined Dissolved BC ined by adding Water Using the close Water out using proc merated by cu ur incubation a used for non-tu Water Water Water	d by diluting and incubating a sample for a spec DD (SOLUBLE) is determined by filtering the sample prior a nitrification inhibitor to the diluted sample prior Chemical Oxygen Demand (COD) d reflux colourimetric method Fecal Coliform Count-MF edures adapted from APHA Method 9222 "Mem- ilturing and colony counting. A known sample vo t 44.5 degrees C of the filter with the appropriat irbid water with a low background bacteria level.	Method Reference** APHA 5210 B-5 day IncubO2 electrode iochemical Oxygen Demand (BOD)". All forms of biochemical cified time period, and measuring the oxygen depletion using a mple through a glass fibre filter prior to dilution. Carbonaceous or to incubation. APHA 5220 D Colorimetry APHA 9222D hbrane Filter Technique for Members of the Coliform Group". olume is filtered through a 0.45 micron membrane filter. The test te growth medium. This method is specific for thermotolerant
oxygen demand (BOD) dissolved oxygen meter BOD (CBOD) is determin COD-T-COL-CL Samples are analyzed u FCC-MF-CL This analysis is carried of Coliform bacteria is enu involves an initial 24 hou bacteria (Fecal) and is u N2N3-CALC-CL NH3-F-CL This analysis is carried of	Matrix Water out using proc are determined Dissolved BC ined by adding Water using the close Water out using proc imerated by cu ur incubation a used for non-tu Water Water	Biochemical Oxygen Demand (BOD) edures adapted from APHA Method 5210B - "B d by diluting and incubating a sample for a spec DD (SOLUBLE) is determined by filtering the sam a nitrification inhibitor to the diluted sample prior Chemical Oxygen Demand (COD) d reflux colourimetric method Fecal Coliform Count-MF edures adapted from APHA Method 9222 "Mem Ilturing and colony counting. A known sample voi t 44.5 degrees C of the filter with the appropriat irbid water with a low background bacteria level.	APHA 5210 B-5 day IncubO2 electrode iochemical Oxygen Demand (BOD)". All forms of biochemical cified time period, and measuring the oxygen depletion using a mple through a glass fibre filter prior to dilution. Carbonaceous or to incubation. APHA 5220 D Colorimetry APHA 9222D hbrane Filter Technique for Members of the Coliform Group". olume is filtered through a 0.45 micron membrane filter. The test te growth medium. This method is specific for thermotolerant
BOD-BC-CL This analysis is carried o oxygen demand (BOD) dissolved oxygen meter BOD (CBOD) is determin COD-T-COL-CL Samples are analyzed u FCC-MF-CL This analysis is carried of Coliform bacteria is enu involves an initial 24 hou bacteria (Fecal) and is u N2N3-CALC-CL NH3-F-CL This analysis is carried of Chemistry, "Flow-inje	Water out using proc are determined . Dissolved BC ined by adding Water using the close Water out using proc imerated by cu ur incubation a used for non-tu Water Water	Biochemical Oxygen Demand (BOD) edures adapted from APHA Method 5210B - "B d by diluting and incubating a sample for a spec DD (SOLUBLE) is determined by filtering the sam a nitrification inhibitor to the diluted sample prior Chemical Oxygen Demand (COD) d reflux colourimetric method Fecal Coliform Count-MF edures adapted from APHA Method 9222 "Mem Ilturing and colony counting. A known sample voi t 44.5 degrees C of the filter with the appropriat irbid water with a low background bacteria level.	APHA 5210 B-5 day IncubO2 electrode iochemical Oxygen Demand (BOD)". All forms of biochemical cified time period, and measuring the oxygen depletion using a mple through a glass fibre filter prior to dilution. Carbonaceous or to incubation. APHA 5220 D Colorimetry APHA 9222D hbrane Filter Technique for Members of the Coliform Group". olume is filtered through a 0.45 micron membrane filter. The test te growth medium. This method is specific for thermotolerant
This analysis is carried o oxygen demand (BOD) o dissolved oxygen meter BOD (CBOD) is determin COD-T-COL-CL Samples are analyzed u FCC-MF-CL This analysis is carried o Coliform bacteria is enu involves an initial 24 hou bacteria (Fecal) and is u V2N3-CALC-CL NH3-F-CL This analysis is carried o of Chemistry, "Flow-inje	out using proc are determined . Dissolved BC ined by adding Water using the close Water out using proc imerated by cu ur incubation a used for non-tu Water Water	edures adapted from APHA Method 5210B - "B d by diluting and incubating a sample for a spec DD (SOLUBLE) is determined by filtering the sam a nitrification inhibitor to the diluted sample prior Chemical Oxygen Demand (COD) d reflux colourimetric method Fecal Coliform Count-MF edures adapted from APHA Method 9222 "Mem Ilturing and colony counting. A known sample vo t 44.5 degrees C of the filter with the appropriat irbid water with a low background bacteria level.	iochemical Oxygen Demand (BOD)". All forms of biochemical cified time period, and measuring the oxygen depletion using a mple through a glass fibre filter prior to dilution. Carbonaceous or to incubation. APHA 5220 D Colorimetry APHA 9222D hbrane Filter Technique for Members of the Coliform Group". olume is filtered through a 0.45 micron membrane filter. The test te growth medium. This method is specific for thermotolerant
oxygen demand (BOD) dissolved oxygen meter BOD (CBOD) is determi COD-T-COL-CL Samples are analyzed u FCC-MF-CL This analysis is carried of Coliform bacteria is enu involves an initial 24 hor bacteria (Fecal) and is u N2N3-CALC-CL NH3-F-CL This analysis is carried of of Chemistry, "Flow-inje	are determined Dissolved BC ined by adding Water using the close Water out using proc imerated by cu ur incubation a used for non-tu Water Water	d by diluting and incubating a sample for a spec DD (SOLUBLE) is determined by filtering the sample prior a nitrification inhibitor to the diluted sample prior Chemical Oxygen Demand (COD) d reflux colourimetric method Fecal Coliform Count-MF edures adapted from APHA Method 9222 "Mem- ilturing and colony counting. A known sample vo t 44.5 degrees C of the filter with the appropriat irbid water with a low background bacteria level.	cified time period, and measuring the oxygen depletion using a mple through a glass fibre filter prior to dilution. Carbonaceous or to incubation. APHA 5220 D Colorimetry APHA 9222D hbrane Filter Technique for Members of the Coliform Group". olume is filtered through a 0.45 micron membrane filter. The test te growth medium. This method is specific for thermotolerant
Samples are analyzed u FCC-MF-CL This analysis is carried of Coliform bacteria is enu involves an initial 24 hot bacteria (Fecal) and is u N2N3-CALC-CL NH3-F-CL This analysis is carried of of Chemistry, "Flow-inje	Using the close Water out using proc Imerated by cu ur incubation a used for non-tu Water Water	d reflux colourimetric method Fecal Coliform Count-MF edures adapted from APHA Method 9222 "Mem ilturing and colony counting. A known sample vo it 44.5 degrees C of the filter with the appropriat irbid water with a low background bacteria level.	APHA 9222D hbrane Filter Technique for Members of the Coliform Group". olume is filtered through a 0.45 micron membrane filter. The test te growth medium. This method is specific for thermotolerant
FCC-MF-CL This analysis is carried of Coliform bacteria is enu nvolves an initial 24 hou bacteria (Fecal) and is u N2N3-CALC-CL NH3-F-CL This analysis is carried of Chemistry, "Flow-inje	Water out using proc ur incubation a used for non-tu Water Water	Fecal Coliform Count-MF edures adapted from APHA Method 9222 "Mem lturing and colony counting. A known sample vo tt 44.5 degrees C of the filter with the appropriat rbid water with a low background bacteria level.	nbrane Filter Technique for Members of the Coliform Group". olume is filtered through a 0.45 micron membrane filter. The test te growth medium. This method is specific for thermotolerant
This analysis is carried of Coliform bacteria is enu involves an initial 24 hot bacteria (Fecal) and is u N2N3-CALC-CL NH3-F-CL This analysis is carried of Chemistry, "Flow-inje	out using proc imerated by cu ur incubation a used for non-tu Water Water	edures adapted from APHA Method 9222 "Mem Ituring and colony counting. A known sample vo tt 44.5 degrees C of the filter with the appropriat Irbid water with a low background bacteria level.	nbrane Filter Technique for Members of the Coliform Group". olume is filtered through a 0.45 micron membrane filter. The test te growth medium. This method is specific for thermotolerant
Coliform bacteria is enu nvolves an initial 24 hou bacteria (Fecal) and is u N2N3-CALC-CL NH3-F-CL This analysis is carried of Chemistry, "Flow-inje	merated by cu ur incubation a used for non-tu Water Water	Ituring and colony counting. A known sample vo it 44.5 degrees C of the filter with the appropriat rbid water with a low background bacteria level.	olume is filtered through a 0.45 micron membrane filter. The test te growth medium. This method is specific for thermotolerant
NH3-F-CL This analysis is carried o of Chemistry, "Flow-inje	Water	Niturato - Nituito	
This analysis is carried of Chemistry, "Flow-inje		Nitrate+Nitrite	CALCULATION
of Chemistry, "Flow-inje	aut an aulturi	Ammonia by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
			dified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society on of trace levels of ammonium in seawater", Roslyn J. Waston et
NO2-IC-N-CL	Water	Nitrite in Water by IC	EPA 300.1 (mod)
norganic anions are an	alyzed by lon (Chromatography with conductivity and/or UV de	etection.
NO3-IC-N-CL	Water	Nitrate in Water by IC	EPA 300.1 (mod)
norganic anions are an	alyzed by lon (Chromatography with conductivity and/or UV de	tection.
P-T-COL-CL	Water	Total P in Water by Colour	APHA 4500-P PHOSPHORUS
This analysis is carried opersulphate digestion of		edures adapted from APHA Method 4500-P "Pt	nosphorus". Total Phosphorus is determined colourimetrically afte
PH-CL	Water	рН	APHA 4500 H-Electrode
		ng a pH electrode. All samples analyzed by this analysis is recommended for pH where highly a	method for pH will have exceeded the 15 minute recommended accurate results are needed)
PO4-DO-COL-CL	Water	Diss. Orthophosphate in Water by Colour	APHA 4500-P PHOSPHORUS
		edures adapted from APHA Method 4500-P "Pr been lab or field filtered through a 0.45 micron	nosphorus". Dissolved Orthophosphate is determined membrane filter.
TSS-CL	Water	Total Suspended Solids	APHA 2540 D-Gravimetric
		edures adapted from APHA Method 2540 "Solic mple through a glass fibre filter, and by drying th	ds". Solids are determined gravimetrically. Total suspended solids he filter at 104 deg. C.
ALS test methods may	incorporate m	odifications from specified reference methods t	to improve performance.
The last two letters of th	ne above test c	code(s) indicate the laboratory that performed ar	nalytical analysis for that test. Refer to the list below:

CL

ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA

Chain of Custody Numbers:

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
---------------	--------	-------------------------	--------------------

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS Environmental

ANALYTICAL CHEMISTRY & TESTING SERVICES

www.alsenviro.com

Vancouver BC, 1988 Triumph Street, V5L 1K5, Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253-6700 Fort St. John BC, Box 256, 9831 - 98A Avenue, V1J 6W7, Tel: 250-261-5517 Fax: 250-261-5587 Grand Prairie AB, 9595 - 111 Street, T8V 5W1, Tel: 780-539-5196 Toll Free: 1-800-668-9878 Fax: 780-513-2191 Fort McMurray AB, Bay 1, 245 Macdonald Cr, T9H 4B5, Tel: 780-791-1524 Fax: 780-791-1586 Edmonton AB, 9936 - 67th Avenue, T6E 0P5, Tel: 780-413-5227 Toll Free: 1-800-668-9878 Fax: 780-437-2311 Calgary AB, Bay 7, 1313 - 44th Avenue NE, T2E 6L5, Tel: 403-291-9897 Toll Free: 1-800-668-9878 Fax: 403-291-0298 Saskatoon SK, 819 - 58th Street East, S7K 6X5, Tel: 306-668-8370 Toll Free: 1-800-667-7645 Fax: 306-668-8383

SENC	D REPORT T	ю:		CHAIN OF (CUS	TO	DY	FC	RN										PAGE		OF			
COM	PANY:	FERNIE ALF	PINE RESORT	UTILITIES CORPO	RATION	ATTN:	PATRICK MAJER	AN	ALYS	SIS F	REQI	JEST	ED:			•.								
	RESS:	1505 - 17TH	AVENUE SOL	ITH WEST											·									
CITY:		CALGARY		PROV: ALBER	ТА	POSTAL CODE:	T2T_0E2			II 1 1							0.14		i i i i i i i i					
ſEL:		403 - 256 - 8	473	FAX: 403 - 24		SAMPLER:	Carter Barrett														1			
PRO.	JECT NAME	AND NO.:	FARUC – Spri	ng EMS week 2		QUOTE NO:																i		
20 N		[· · · · · · · · · · · · · · · · · · ·	ALS CONTACT:	Patryk Woyciak							L	.257	331	0-C	OF(C				.			
		T .	🗹 HARI		AIL - ADDRES	omajer@skirc	r.com	ŝ		1	1		[.]				• .		ł	م	1			
KEP(ORT FORMA	.1.	🗌 FAX	EXCEL	PDF	OTHER:		Coliforms																
	WO#		AMPLE IDENTIF		DATE / TIME	COLLECTED	MATRIX	Sal C	S		P P	die	NH3-N	NO3-N	NO2-N	BOD5	Q	5						ple specific
		0		ICATION .	YYYY-MM-DD	TIME		Fecal	TS:	Ha	Ortho	Total	HZ J	g	No	BO	COD		L					dates, etc.)
		WWTP Influ	ent Routine	/	2021-04-05	10:00	Water		Х	X	<u>,</u>		4				-					J. 3	'°ς	
Ī		WWTP Influ	ent BOD		2021-04-05	10:00	Water									х								
1	•	WWTP Efflu	ent Routine	3	2021-04-05	10:60	Water		X	1 X 1						. *	X					ノノ .	Y .	<
t		WWTP Efflu	ent BOD 4	/	2021-04-05	10:00	Water						•			Х								
Ī		WWTP Efflu	ent Nutrients	5	2021-04-05	10:00	Water	•	•	Γ.	X	X	X	X	X		••••	- 1 No.						
Ī		WWTP Efflu	ent Bacteriolog	ical 6	2021-04-05	10:00	Water	Х																
ł		Elk River Up	stream Routine	7	2021-04-05	7:30	Water	· .	X	х				÷		1			- · ·	2		3.6	3 d <	
>	· · · · · · · · · · · · · · · · · · ·	Elk River Up	stream Nutrien	ts P		7:30	Water				х	X	х	Х	Х									
oNL√	· · ·	Elk River Up	stream Bacteri	ological 9	2021-04-05	9:30	Water	x	а. Г	ŀ	1		:											
-SE		Elk River @	Outfall Routine	10	2021-04-05	9:45	Water		x	x												3.7	7~	
			Outfall Nutrient		2021-04-05	9.45	Water				x	x	х	X	х									
۲AB			Outfall Bacteric		2021-04-05	9:45	Water	x			1													
FOR			wnstream Rout		2021-04-05	9.50	Water		x	X						· ·				-		3.	5%	•
	<u> </u>	Elk River Do	wnstream Nutr	ients 14	2021-04-05	9:50	Water			1	X	X	х	х	x									
.		Elk River Do	wnstream Bact	eriological /5	2021-04-05	9:50	Water	X									••							
· I																								
Ī					2 a											2								
Ī			·····			1		Γ																·
ľ																								
Ì										Γ														1/
			ROUTI	NE ORUSH	SPECIFY DATE:		(surcharge may apply)			REL	INQUI	SHED	BY:		۵	ATE:	2	021-0)4-05	REC		BY: [DATE:	410
URI	N AROUND I	REQUIRED.				-	-			Cart	ter Ba	rrett			1	IME:			11:30	L	II)	4	TIME:	-52
SEN	D INVOICE T	`O :	SAME /	AS REPOR DIF	FERENT FROM	M REPORT (pr	ovide details			REL	INQUI	SHED	BY:		D	ATE				REC	EIVED	BY: C	DATE	
INVO	ICE FORMA	. т :						_							1	IME:	-					·	TIME:	
SPE	CIAL INSTRU	JCTIONS:		A COPY OF THE R	ESULTS TO 250	0-423-4652 OR 1	E-MAIL TO			FO	R LA	B US	EON					<	5			·		
			wastewater@s	skifernie.com								al Intac				ole Ter n?			No	۴c	1	ng Method epacks	l? Ice	None
										I)	Yes _		^I	"^	11026				×		1	-packs		indite

G:/QUALITY/00_DOCUMENTS/10_AUTHORIZED/FORMS/CoC for ALS EMS.xis

FERNIE ALPINE RESORT UTILITIES CORPORATION ATTN: Patrick Majer 1505 - 17TH AVENUE SW CALGARY AB T2T 0E2 Date Received:13-APR-21Report Date:27-APR-21 15:03 (MT)Version:FINAL REV. 2

Client Phone: 800-258-7669

Certificate of Analysis

Lab Work Order #: L2575769 Project P.O. #: NOT SUBMITTED Job Reference: FARUC - SPRING EMS WEEK 3 C of C Numbers: Legal Site Desc:

Mingl

Patryk Wojciak, B.Sc., P.Chem. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

FARUC - SPRING EMS WEEK 3

ALS ENVIRONMENTAL ANALYTICAL REPORT

_2575769-1 WWTP INFLUENT Sampled By: CARTER BARRETT on 12-APR-21 @ 08:00 Matrix: WATER Miscellaneous Parameters Biochemical Oxygen Demand Total Suspended Solids pH -2575769-2 WWTP EFFLUENT Sampled By: CARTER BARRETT on 12-APR-21 @ 08:00 Matrix: WATER Miscellaneous Parameters	57 270 7.17		20 3.0 0.10	mg/L mg/L	13-APR-21 17-APR-21	R5430517
Sampled By: CARTER BARRETT on 12-APR-21 @ 08:00 Matrix: WATER Miscellaneous Parameters Biochemical Oxygen Demand Total Suspended Solids pH 2575769-2 WWTP EFFLUENT Sampled By: CARTER BARRETT on 12-APR-21 @ 08:00 Matrix: WATER	270		3.0	mg/L		R5430517
Miscellaneous Parameters Biochemical Oxygen Demand Total Suspended Solids pH 2575769-2 WWTP EFFLUENT Sampled By: CARTER BARRETT on 12-APR-21 @ 08:00 Matrix: WATER	270		3.0	mg/L		R5430517
Biochemical Oxygen Demand Total Suspended Solids pH 2575769-2 WWTP EFFLUENT Sampled By: CARTER BARRETT on 12-APR-21 @ 08:00 Matrix: WATER	270		3.0	mg/L		R5430517
Total Suspended Solids pH _2575769-2 WWTP EFFLUENT Sampled By: CARTER BARRETT on 12-APR-21 @ 08:00 Matrix: WATER	270		3.0	mg/L		R5430517
pH 2575769-2 WWTP EFFLUENT Sampled By: CARTER BARRETT on 12-APR-21 @ 08:00 Matrix: WATER				-	17-APR-21	1.10.00011
2575769-2 WWTP EFFLUENT Sampled By: CARTER BARRETT on 12-APR-21 @ 08:00 Matrix: WATER	7.17		0.10			R5430264
Sampled By: CARTER BARRETT on 12-APR-21 @ 08:00 Matrix: WATER				pН	20-APR-21	R5434279
Matrix: WATER						
Miscellaneous Parameters						
Ammonia, Total (as N)	<0.050		0.050	mg/L	16-APR-21	R5429198
Biochemical Oxygen Demand	<2.0		2.0	mg/L	13-APR-21	R5430517
Chemical Oxygen Demand	<10		10	mg/L	13-APR-21	R5424396
Orthophosphate-Dissolved (as P)	0.131	DLHC	0.010	mg/L	13-APR-21	R5423146
Coliform Bacteria - Fecal	<1		1	CFU/100mL	13-APR-21	R5424696
Phosphorus (P)-Total	0.169	DLHC	0.010	mg/L	19-APR-21	R5431839
Total Suspended Solids	<3.0		3.0	mg/L	17-APR-21	R5430264
pH	7.78		0.10	рН	20-APR-21	R5434279
NO2, NO3 and Sum of NO2/NO3						
Nitrate in Water by IC Nitrate (as N)	20.9	HTD	0.020	mg/L	17-APR-21	R5432564
Nitrate+Nitrite Nitrate and Nitrite (as N)	20.9		0.022	mg/L	20-APR-21	
Nitrite in Water by IC Nitrite (as N)	<0.010	HTD	0.010	mg/L	17-APR-21	R5432564
_2575769-3 ELK RIVER UPSTREAM						
Sampled By: CARTER BARRETT on 12-APR-21 @ 08:00						
Matrix: WATER						
Miscellaneous Parameters						
Ammonia, Total (as N)	<0.050		0.050	mg/L	16-APR-21	R5429198
Orthophosphate-Dissolved (as P)	<0.0050		0.0050	mg/L	13-APR-21	R5423146
Coliform Bacteria - Fecal	<1		1	CFU/100mL	13-APR-21	R5424696
Phosphorus (P)-Total	<0.0050		0.0050	mg/L	19-APR-21	R5431839
Total Suspended Solids	<3.0		3.0	mg/L	17-APR-21	R5430264
pH	8.25		0.10	рН	20-APR-21	R5434279
NO2, NO3 and Sum of NO2/NO3						
Nitrate in Water by IC						
Nitrate (as N)	2.34	HTD	0.020	mg/L	17-APR-21	R5432564
Nitrate+Nitrite Nitrate and Nitrite (as N)	2.34		0.022	mg/L	20-APR-21	
Nitrite in Water by IC	2.34		0.022	iiig/L	20-AF K-21	
Nitrite (as N)	<0.010	HTD	0.010	mg/L	17-APR-21	R5432564
2575769-4 ELK RIVER OUTFALL	-					
Sampled By: CARTER BARRETT on 12-APR-21 @ 08:00						
Matrix: WATER						
Maux. WATEN Miscellaneous Parameters						
Ammonia, Total (as N)	<0.050		0.050	mg/L	16-APR-21	R5429198
Orthophosphate-Dissolved (as P)	0.0666		0.0050	mg/L	13-APR-21	R5423146
Coliform Bacteria - Fecal	<1		1	CFU/100mL	13-APR-21	R5424696
Phosphorus (P)-Total	0.078	DLHC	0.010	mg/L	19-APR-21	R5431839
Total Suspended Solids	3.6		3.0	mg/L	17-APR-21	R5430264

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2575769-4 ELK RIVER OUTFALL							
Sampled By: CARTER BARRETT on 12-APR-21 @ 08	3.00						
Matrix: WATER							
pH	8.00		0.10	рН		20-APR-21	R5434279
NO2, NO3 and Sum of NO2/NO3	0.00		0.10	pri		20-AF K-21	R0404279
Nitrate in Water by IC							
Nitrate (as N)	9.98	HTD	0.020	mg/L		17-APR-21	R5432564
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	9.98		0.022	mg/L		20-APR-21	
Nitrite in Water by IC							
Nitrite (as N)	<0.010	HTD	0.010	mg/L		17-APR-21	R5432564
L2575769-5 ELK RIVER DOWNSTREAM							
Sampled By: CARTER BARRETT on 12-APR-21 @ 08	3:00						
Matrix: WATER							
Miscellaneous Parameters						10 100 0	
Ammonia, Total (as N)	< 0.050		0.050	mg/L		16-APR-21	R5429198
Orthophosphate-Dissolved (as P)	<0.0050		0.0050	mg/L		13-APR-21	R5423146
Coliform Bacteria - Fecal	1		1	CFU/100mL		13-APR-21	R5424696
Phosphorus (P)-Total	<0.0050		0.0050	mg/L		19-APR-21	R5431839
Total Suspended Solids	<3.0		3.0	mg/L		17-APR-21	R5430264
pH	8.26		0.10	рН		20-APR-21	R5434279
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC Nitrate (as N)	2.28	HTD	0.020	mg/L		17-APR-21	R5432564
Nitrate+Nitrite	2.20		0.020	iiig/L			110402004
Nitrate and Nitrite (as N)	2.28		0.022	mg/L		20-APR-21	
Nitrite in Water by IC							
Nitrite (as N)	<0.010	HTD	0.010	mg/L		17-APR-21	R5432564

Chain of Custody Numbers:

Reference Information

Sample Parameter Qualifier Key:

Qualifier	Description		
DLHC	Detection Limit Raise	d: Dilution required due to high concentr	ation of test analyte(s).
HTD	Hold time exceeded f	or re-analysis or dilution, but initial testin	g was conducted within hold time.
est Method R	eferences:		
ALS Test Code	Matrix	Test Description	Method Reference**
BOD-BC-CL	Water	Biochemical Oxygen Demand (BOD)	APHA 5210 B-5 day IncubO2 electrode
oxygen demand dissolved oxyge	(BOD) are determined n meter. Dissolved BO	by diluting and incubating a sample for a	B - "Biochemical Oxygen Demand (BOD)". All forms of biochemical a specified time period, and measuring the oxygen depletion using a he sample through a glass fibre filter prior to dilution. Carbonaceous ole prior to incubation.
COD-T-COL-CL	Water	Chemical Oxygen Demand (COD)	APHA 5220 D Colorimetry
Samples are and	alyzed using the closed	I reflux colourimetric method	
FCC-MF-CL	Water	Fecal Coliform Count-MF	APHA 9222D
Coliform bacteria involves an initia	a is enumerated by cult al 24 hour incubation at	uring and colony counting. A known sam	"Membrane Filter Technique for Members of the Coliform Group". aple volume is filtered through a 0.45 micron membrane filter. The test ropriate growth medium. This method is specific for thermotolerant a level.
N2N3-CALC-CL	Water	Nitrate+Nitrite	CALCULATION
NH3-F-CL	Water	Ammonia by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
			es modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Societ nination of trace levels of ammonium in seawater", Roslyn J. Waston e
NO2-IC-N-CL	Water	Nitrite in Water by IC	EPA 300.1 (mod)
Inorganic anions	are analyzed by Ion C	hromatography with conductivity and/or	UV detection.
NO3-IC-N-CL	Water	Nitrate in Water by IC	EPA 300.1 (mod)
Inorganic anions	are analyzed by Ion C	hromatography with conductivity and/or	UV detection.
P-T-COL-CL	Water	Total P in Water by Colour	APHA 4500-P PHOSPHORUS
	carried out using proce estion of the sample.	dures adapted from APHA Method 4500	-P "Phosphorus". Total Phosphorus is determined colourimetrically after
PH-CL	Water	рН	APHA 4500 H-Electrode
		g a pH electrode. All samples analyzed b nalysis is recommended for pH where hi	by this method for pH will have exceeded the 15 minute recommended ghly accurate results are needed)
PO4-DO-COL-C	L Water	Diss. Orthophosphate in Water by Col	our APHA 4500-P PHOSPHORUS
		dures adapted from APHA Method 4500 been lab or field filtered through a 0.45 m	-P "Phosphorus". Dissolved Orthophosphate is determined icron membrane filter.
TSS-CL	Water	Total Suspended Solids	APHA 2540 D-Gravimetric
		dures adapted from APHA Method 2540 ple through a glass fibre filter, and by dr	"Solids". Solids are determined gravimetrically. Total suspended solids ying the filter at 104 deg. C.
* ALS test metho	ods may incorporate mo	odifications from specified reference met	hods to improve performance.
The last two lette	ers of the above test co	ode(s) indicate the laboratory that perform	ned analytical analysis for that test. Refer to the list below:
Laboratory Defi	nition Code Labo	ratory Location	
CL		ENVIRONMENTAL - CALGARY, ALBER	

L2575769 CONTD PAGE 5 of 5 Version: FINAL REV

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
---------------	--------	-------------------------	--------------------

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS Environmental

ANALYTICAL CHEMISTRY & TESTING SERVICES

www.alsenviro.com

Vancouver BC, 1988 Triumph Street, V5L 1K5, Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253-6700 Fort St, John BC, Box 256, 9831 - 98A Avenue, V1J 6W7, Tel: 250-261-5517 Fax: 250-261-5587 Grand Prairie AB, 9595 - 111 Street, T8V 5W1, Tel: 780-539-5196 Toll Free: 1-800-668-9878 Fax: 780-513-2191 Fort McMurray AB, Bay 1, 245 Macdonald Cr, T9H 4B5, Tel: 780-791-1524 Fax: 780-791-1586 Edmonton AB, 9936 - 67th Avenue, T6E 0P5, Tel: 780-413-5227 Toll Free: 1-800-668-9878 Fax: 780-437-2311 Calgary AB, Bay 7, 1313 - 44th Avenue NE, T2E 6L5, Tel: 403-291-9897 Toll Free: 1-800-668-9878 Fax: 403-291-0298 Saskatoon SK, 819 - 58th Street East, S7K 6X5, Tel: 306-668-8370 Toll Free: 1-800-667-7645 Fax: 306-668-8383

SENC	REPORT TO	D:					CHAIN OF C	CUS	TO	DY	FO	RM										PAGE	· 0	
	PANY:		PINE RESORT	UTILITIES CORPO	RATION	ATTN:	PATRICK MAJER	AN	ALYS		EQL	JEST	ED:							·				
	RESS:	1505 - 17TH	AVENUE SOU	ITH WEST						.54		I	ł	1	1.	العم مريد		u i i i:						
CITY:		CALGARY		PROV: ALBER	TA	POSTAL CODE:	T2T 0E2			l								HIN						
TEL:		403 - 256 - 8	8473	FAX: 403 - 24	14 - 3774	SAMPLER:	Carter Barrett			H														
	JECT NAME	AND NO.:	FARUC – Spri	ng EMS week 3		QUOTE NO:							L25	5757	769-	.CO	=C							
PO N				ALS CONTACT:	Patryk Woyciak	7																		
	·····	· · · · · · · · · · · · · · · · · · ·			AIL - ADDRES	pmajer@skirc	<u>r.com</u>	2			"	77.7					1							
REPO	ORT FORMA	T:	□ FAX		🖸 PDF	OTHER:		Coliforms								· .								
	WO#	1				COLLECTED		ů.		•	ЧΟ	Ч	z	N	Z)5					Ī	NOT	ES (sample	specific
		5	SAMPLE IDENTIF	ICATION	YYYY-MM-DD	TIMÉ	MATRIX	Fecal	TSS	Ha	Ortho	Total	NH3-N	N-EON	NO2-N	BOD5	cop						ents, due dat	es, etc.)
		WWTP Influ	ient Routine		2021-04-12	25	Water		X	X							-					7.8	>°<	
		WWTP Influ	uent BOD	Ī	2021-04-12		Water									Х								
		WWTP Eff	uent Routine	3	2021-04-12		Water		X	X					:		X		•			<u> </u>	09	
		WWTP Eff	uent BOD	<u>у</u> Ч	2021-04-12		Water									х								
		WWTP Eff	uent Nutrients	5	2021-04-12		Water	Γ			X	X	Х	X	Х									
		WWTP Eff	uent Bacteriolog	pical 6	2021-04-12		Water	X																
	 •		pstream Routine		2021-04-12		Water		X	X				-				·				32	20	
≻.	<u>·</u>	Elk River U	pstream Nutrien	its P	2021-04-12		Water				X	X	х	х	Х									
FOR LAB USE ONLY		Elk River U	pstream Bacteri	ological 9	2021-04-12		Water	Х					•			<u> </u>		r^{1}	-					
ЗE	-	Elk River @	Outfall Routine	10	2021-04-12		Water		X	X												5.0		
В П		Elk River @	Outfall Nutrien	ts //	2021-04-12		Water	· .	•		X -	Х	X	X	X				•					
Ч Г	1. A. A.	Elk River @	Outfall Bacteri	ological	2021-04-12		Water	х																
Ö		Elk River D	ownstream Rou	tine /3	2021-04-12		Water		X	X		<u> </u>	<u> </u>			-					· .	4	<u>2°C</u>	
		Elk River D	ownstream Nuti	rients / 4	2021-04-12		Water			<u> </u>	X	X	X .	X	X					ļ				
-		Elk River D	ownstream Bac	teriological 15	2021-04-12		Water	X											:	ļ				
		1										<u> </u>												
										Ľ		1							<u> </u>	1				
										ļ			<u> </u>			ļ				_				
а. 1		24		· · · · · · · · · · · · · · · · · · ·							•		<u> </u>		ļ					<u> </u>				
															ļ				L			·-···		
			ROUT	INE ORUSH	SPECIFY DATE	:	(surcharge may apply)					ISHED	BY:		<u> </u>	DATE:				REC		/		1.2 06
										Car	ter Ba	arrett	_		ļ	TIME:	μ	:4:	2	+	nr		TIME:	
SEN		го:		AS REPOR DIF			rovide details			REL	INQU	ISHED	BY:		^C	DATE:				REC	EIVED		DATE:	
	OICE FORM									-						TIME:		<u> </u>					TIME:	
SPE	CIAL INSTR	UCTIONS:		A COPY OF THE F skifernie.com	RESULTS TO 25	50-423-4652 OR	E-MAIL 10					B US al Inta		NLY	Sam	nie Te	mper	ature:		°c	Cooli	ng Metho	d? 5	(
			wasiewalel@	enterne.com								al inta No		N/A		en? _	Yes	s	No			epacks	ice	None
L											_					Gil		ry/nn D	OCUME	NTS/10	AUTHO	RIZED/FOF	MS/CoC for A	LS EMS.xls

FERNIE ALPINE RESORT UTILITIES CORPORATION ATTN: Patrick Majer 1505 - 17TH AVENUE SW CALGARY AB T2T 0E2 Date Received: 20-APR-21 Report Date: 27-APR-21 14:31 (MT) Version: FINAL

Client Phone: 800-258-7669

Certificate of Analysis

Lab Work Order #: L2578287 Project P.O. #: NOT SUBMITTED Job Reference: FARUC - SPRING EMS WEEK 4 C of C Numbers: Legal Site Desc:

May

Patryk Wojciak, B.Sc., P.Chem. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2578287-1 WWTP INFLUENT							
Sampled By: CARTER BENNETT on 19-APR-21 @ 10:0	0						
Matrix: WATER							
Miscellaneous Parameters							
Biochemical Oxygen Demand	43		20	mg/L		20-APR-21	R5441332
Total Suspended Solids	56.8		3.0	mg/L		22-APR-21	R5438243
рН	7.42		0.10	рН		27-APR-21	R5441915
L2578287-2 WWTP EFFLUENT							
Sampled By: CARTER BENNETT on 19-APR-21 @ 10:0	0						
Matrix: WATER							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		22-APR-21	R5438156
Biochemical Oxygen Demand	<2.0		2.0	mg/L		20-APR-21	R5441332
Chemical Oxygen Demand	<10		10	mg/L		20-APR-21	R5434379
Orthophosphate-Dissolved (as P)	0.0570		0.0050	mg/L		20-APR-21	R5434597
Coliform Bacteria - Fecal	<1		1	CFU/100mL		20-APR-21	R5436596
Phosphorus (P)-Total	0.064	DLM	0.020	mg/L		26-APR-21	R5441212
Total Suspended Solids	<3.0		3.0	mg/L		22-APR-21	R5438243
pH	7.69		0.10	рН		27-APR-21	R5441915
Total Coliforms and E. Coli by MPN							
MPN - E. Coli	<1		1	MPN/100mL		20-APR-21	R5436531
MPN - Total Coliforms	<1		1	MPN/100mL		20-APR-21	R5436531
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC Nitrate (as N)	17.4		0.020	mg/L		20-APR-21	R5437936
Nitrate+Nitrite	17.4		0.020	ing/L		20-41 11-21	10437930
Nitrate and Nitrite (as N)	17.4		0.022	mg/L		22-APR-21	
Nitrite in Water by IC			0.022				
Nitrite (as N)	<0.010		0.010	mg/L		20-APR-21	R5437936
L2578287-3 ELK RIVER UPSTREAM							
Sampled By: CARTER BENNETT on 19-APR-21 @ 10:1	5						
Matrix: WATER							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		22-APR-21	R5438156
Orthophosphate-Dissolved (as P)	<0.0050		0.0050	mg/L		20-APR-21	R5434597
Coliform Bacteria - Fecal	3		1	CFU/100mL		20-APR-21	R5436596
Phosphorus (P)-Total	<0.0050		0.0050	mg/L		23-APR-21	R5440552
Total Suspended Solids	6.0		3.0	mg/L		22-APR-21	R5438243
рН	8.18		0.10	pН		27-APR-21	R5441915
Total Coliforms and E. Coli by MPN							
MPN - E. Coli	2	OCR	1	MPN/100mL		20-APR-21	R5436531
MPN - Total Coliforms	38	OCR	1	MPN/100mL		20-APR-21	R5436531
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC Nitrate (as N)	1.99		0.020	mg/L		20-APR-21	R5437936
Nitrate+Nitrite	1.33		0.020	iiig/L			11040/900
Nitrate and Nitrite (as N)	1.99		0.022	mg/L		22-APR-21	
Nitrite in Water by IC				<i>3</i> , –			
Nitrite (as N)	<0.010		0.010	mg/L		20-APR-21	R5437936
_2578287-4 ELK RIVER @ OUTFALL							
Sampled By: CARTER BENNETT on 19-APR-21 @ 10:3	0						
Matrix: WATER							
Miscellaneous Parameters							

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2578287-4 ELK RIVER @ OUTFALL							
Sampled By: CARTER BENNETT on 19-APR-21 @ 10	0:30						
Matrix: WATER							
Ammonia, Total (as N)	<0.050		0.050	mg/L		22-APR-21	R5438156
Orthophosphate-Dissolved (as P)	0.0112		0.0050	mg/L		20-APR-21	R5434597
Coliform Bacteria - Fecal	1		0.0050	CFU/100mL		20-APR-21 20-APR-21	R5436596
Phosphorus (P)-Total	0.0096		0.0050			20-APR-21 23-APR-21	R5430590
Total Suspended Solids				mg/L		23-APR-21 22-APR-21	R5440552 R5438243
	3.4		3.0	mg/L			
	8.14		0.10	рН		27-APR-21	R5441915
Total Coliforms and E. Coli by MPN MPN - E. Coli	1	OCR	1	MPN/100mL		20-APR-21	R5436531
MPN - Total Coliforms	170	OCR	1	MPN/100mL		20-APR-21	R5436531
NO2, NO3 and Sum of NO2/NO3	110	0011				20701021	110400001
Nitrate in Water by IC							
Nitrate (as N)	0.969		0.020	mg/L		20-APR-21	R5437936
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	0.969		0.022	mg/L		22-APR-21	
Nitrite in Water by IC							
Nitrite (as N)	<0.010		0.010	mg/L		20-APR-21	R5437936
L2578287-5 ELK RIVER DOWNSTREAM							
Sampled By: CARTER BENNETT on 19-APR-21 @ 10):45						
Matrix: WATER							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		22-APR-21	R5438156
Orthophosphate-Dissolved (as P)	<0.0050		0.0050	mg/L		20-APR-21	R5434597
Coliform Bacteria - Fecal	6		1	CFU/100mL		20-APR-21	R5436596
Phosphorus (P)-Total	0.0094		0.0050	mg/L		23-APR-21	R5440552
Total Suspended Solids	6.4		3.0	mg/L		22-APR-21	R5438243
pH	8.17		0.10	pH		27-APR-21	R5441915
Total Coliforms and E. Coli by MPN	0.17		0.10	pri		27741(21	10441010
MPN - E. Coli	5	OCR	1	MPN/100mL		20-APR-21	R5436531
MPN - Total Coliforms	55	OCR	1	MPN/100mL		20-APR-21	R5436531
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC							
Nitrate (as N)	1.96		0.020	mg/L		20-APR-21	R5437936
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	1.96		0.022	mg/L		22-APR-21	
Nitrite in Water by IC							
Nitrite (as N)	<0.010		0.010	mg/L		20-APR-21	R5437936

Sample Parameter Qualifier Key:

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
OCR	Parameter is out of client specific range.

Test Method References:

ALS Test Code Matrix Method Reference** **Test Description** BOD-BC-CL Biochemical Oxygen Demand (BOD) Water APHA 5210 B-5 day Incub.-O2 electrode This analysis is carried out using procedures adapted from APHA Method 5210B - "Biochemical Oxygen Demand (BOD)". All forms of biochemical oxygen demand (BOD) are determined by diluting and incubating a sample for a specified time period, and measuring the oxygen depletion using a dissolved oxygen meter. Dissolved BOD (SOLUBLE) is determined by filtering the sample through a glass fibre filter prior to dilution. Carbonaceous BOD (CBOD) is determined by adding a nitrification inhibitor to the diluted sample prior to incubation. COD-T-COL-CL Chemical Oxygen Demand (COD) APHA 5220 D Colorimetry Water Samples are analyzed using the closed reflux colourimetric method FCC-MF-CL Water Fecal Coliform Count-MF APHA 9222D This analysis is carried out using procedures adapted from APHA Method 9222 "Membrane Filter Technique for Members of the Coliform Group". Coliform bacteria is enumerated by culturing and colony counting. A known sample volume is filtered through a 0.45 micron membrane filter. The test involves an initial 24 hour incubation at 44.5 degrees C of the filter with the appropriate growth medium. This method is specific for thermotolerant bacteria (Fecal) and is used for non-turbid water with a low background bacteria level. N2N3-CALC-CL CALCULATION Water Nitrate+Nitrite NH3-F-CL Water Ammonia by Fluorescence J. ENVIRON. MONIT., 2005, 7, 37-42, RSC This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et NO2-IC-N-CL Water Nitrite in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. NO3-IC-N-CL Water Nitrate in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. P-T-COL-CL Water Total P in Water by Colour **APHA 4500-P PHOSPHORUS** This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is determined colourimetrically after persulphate digestion of the sample. PH-CI Water APHA 4500 H-Electrode pН pH is determined in the laboratory using a pH electrode. All samples analyzed by this method for pH will have exceeded the 15 minute recommended hold time from time of sampling (field analysis is recommended for pH where highly accurate results are needed) PO4-DO-COL-CL **APHA 4500-P PHOSPHORUS** Diss. Orthophosphate in Water by Colour Water This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. TC-EC-MPN-CL Total Coliforms and E. Coli by MPN APHA METHOD 9223 Water This analysis is carried out using procedures adapted from APHA Method 9223 "Enzyme Substrate Coliform Test". E. coli and Total Coliform are determined simultaneously. The sample is mixed with a mixture hydrolyzable substrates and then sealed in a multi-well packet. The packet is incubated for 18 or 24 hours and then the number of wells exhibiting a positive response are counted. The final result is obtained by comparing the positive responses to a probability table. TSS-CL APHA 2540 D-Gravimetric Water **Total Suspended Solids** This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total suspended solids (TSS) are determined by filtering a sample through a glass fibre filter, and by drying the filter at 104 deg. C. ** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
CL	ALS	ENVIRONMENTAL -	CALGARY, ALBERTA, CANADA
Chain of Custody Number	's:		

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there. mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS Environmental

ANALYTICAL CHEMISTRY & TESTING SERVICES

SEND REPORT TO:

www.alsenviro.com

Vancouver BC, 1988 Triumph Street, V5L 1K5, Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253-6700 Fort St. John BC, Box 256, 9831 - 98A Avenue, V1J 6W7, Tel: 250-261-5517 Fax: 250-261-5587 Grand Prairie AB, 9595 - 111 Street, T8V 5W1, Tel: 780-539-5196 Toll Free: 1-800-668-9878 Fax: 780-513-2191 Fort McMurray AB, Bay 1, 245 Macdonald Cr, T9H 4B5, Tel: 780-791-1524 Fax: 780-791-1586 Edmonton AB, 9936 - 67th Avenue, T6E 0P5, Tel: 780-413-5227 Toll Free: 1-800-668-9878 Fax: 780-437-2311 Calgary AB, Bay 7, 1313 - 44th Avenue NE, T2E 6L5, Tel: 403-291-9897 Toll Free: 1-800-668-9878 Fax: 403-291-0298 Saskatoon SK, 819 - 58th Street East, S7K 6X5, Tel: 306-668-8370 Toll Free: 1-800-667-7645 Fax: 306-668-8383

2021-04-19 No Longo

OF

PAGE

CHAIN OF CUSTODY FORM

сом	IPANY:	FERNIE AL	PINE RESORT	UTILITIES CORPO	RATION	ATTN:	PATRICK MAJER	AN	ALYS	SIS F	REQU						· .						
ADD	RESS:	1505 - 17TH	AVENUE SO																				
СІТУ	4	CALGARY		PROV: ALBER	ТА	POSTAL CODE:	T2T 0E2					ļ											
TEL:		403 - 256 - 1	8473	FAX: 403 - 24	14 - 3774	SAMPLER:	Carter Barrett											7-C0					
PRO	JECT NAME	AND NO.:	FARUC - Spr	ing EMS week 4		QUOTE NO:	Q33058				 	λ.											
PON				ALS CONTACT:	Patryk Woyciak			. ·		· * *		· · · · ·			1	, <u> </u>	1]		í .		
			[] HAR	DCOPY 🖸 EM	AIL - ADDRES	pmajer@skirc	cr.com	s.						· .				×.					
REP	ORT FORMA	T:			🖸 PDF	OTHER:		Coliforms						н 									
<u> </u>	WO#	1	☐ FAX		DATE / TIME		1	<u></u>			٩	a.	z	z	z	ن Ω.					-	NOTES (sampl	io coecific
		5	SAMPLE IDENTI	FICATION	YYYY-MM-DD	TIME	MATRIX	Fecal	TSS	Ha	Ortho	Total P	NH3-N	NO3-N	NO2-N	BOD5	COD			-		comments, due d	
<u> </u>			ient Routine		2024-05-19	10:00	Water	<u> </u>	X	X			2		2			· .				- Ster	-2.84
	· · · ·	WWTP Influ		<u> </u>	2021-04-1		Water									x						1	
	<u>. · · · · · · · · · · · · · · · · · · ·</u>		uent Routine			10:00	Water		X	x							'∶x		1 T 1			9.6,	-
		WWTP Effl		<u> </u>		10:00 .	Water		<u> </u>							x				i			
	· .		uent Nutrients			10:00	Water	1 -			x	x	X	X	Γx.		1.			•			
			uent Bacteriolo	nical		10:00	Water	X			·				<u> </u>							1	
			pstream Routin			10-15	Water		x	x				· · ·							-	3.18	<u> </u>
<u>_</u>			pstream Nutrier			10.15	Water	-		1	x	X	X	X	x	<u> </u>		<u> </u>					
ONLY			pstream Bacter			10:15	Water	X															
щ			Outfall Routing			18:30	Water	<u>,</u>	X	x				1		† ·						3:5	ر
LAB USE			Outfall Nutrier			10:30	Water				X	X	x	x	x .							1	
Z			Outfall Bacteri			10:30	Water	X	†						ŀ			1					
FOR	•		ownstream Rou			10:45	Water		x	ΎΧ	· · ·				1.1							3.3	
		1	ownstream Nut		<u>_</u>	10:45	Water		È-		x	X	x	x	X							i	
			ownstream Bac			10:45	• Water	X					-	÷.,							2		
									† ·		1					<u> </u>	1					<u> </u>	
			· r							7	1.1.3			الله ه	*				*				
	· · · · · · · · ·		<u></u>					-		1	1	1											
				1		() ()	· · · · · · · · · · · · · · · · · · ·	. ÷.,										12					
	<u> </u>	<u> </u>				1	· · · · · · · · · · · · · · · · · · ·	Γ		T	—		1									(in
			ROUT		SPECIFY DATE:		(surcharge may apply)			REL	INQU	ISHED	BY:		(DATE:		2021	96 -19	RECE		BY: DATE:	7/20
TUR	N AROUND F	REQUIRED:								Carl	ter Ba	arrett				TIME:		1:3	0		D	TIME:	425
SEN		0:		AS REPOR DIF	FERENT FROI	W REPORT (pi	rovide details			REL	INQU	SHEE	BY:		<u> </u>	DATE:				REC		BY: DATE:	
INV	DICE FORMA	т:														TIME:	1		_			TIME:	
SPE	CIAL INSTRU	ICTIONS:		A COPY OF THE R	ESULTS TO 25	0-423-4652 OR	E-MAIL TO					BUS		NLY	1	- 6			3				
			^r wastewater@	skitemie.com		· * .	र रे. इ.					al Inta No		N/A		ple Te en2		ature: " s		°C		packslce _	None
ł							3.8								11102	<u> </u>		?	140			Jacksice _	

G:/QUALITY/00_DOCUMENTS/10_AUTHORIZED/FORMS/CoC for ALS EMS.xls

FERNIE ALPINE RESORT UTILITIES CORPORATION ATTN: Patrick Majer 1505 - 17TH AVENUE SW CALGARY AB T2T 0E2 Date Received: 29-APR-21 Report Date: 07-MAY-21 09:19 (MT) Version: FINAL

Client Phone: 800-258-7669

Certificate of Analysis

Lab Work Order #: L2581748 Project P.O. #: NOT SUBMITTED Job Reference: FARUC - SPRING EMS WEEK 5 C of C Numbers: Legal Site Desc:

May

Patryk Wojciak, B.Sc., P.Chem. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2581748-1 WWTP INFLUENT							
Sampled By: CARTER BARRETT on 28-APR-21 @ 10:0	0						
Matrix: WATER							
Miscellaneous Parameters							
Biochemical Oxygen Demand	62		20	mg/L		29-APR-21	R5448677
Total Suspended Solids	150		3.0	mg/L		04-MAY-21	R5450538
рН	7.55		0.10	pН		06-MAY-21	R5453975
_2581748-2 WWTP EFFLUENT							
Sampled By: CARTER BARRETT on 28-APR-21 @ 10:0	0						
Matrix: WATER							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		05-MAY-21	R5450818
Biochemical Oxygen Demand	<2.0		2.0	mg/L		29-APR-21	R5448677
Chemical Oxygen Demand	<10		10	mg/L		30-APR-21	R5443998
Orthophosphate-Dissolved (as P)	0.0797		0.0050	mg/L		29-APR-21	R5445956
Coliform Bacteria - Fecal	<1		1	CFU/100mL		29-APR-21	R5443972
Phosphorus (P)-Total	0.099		0.010	mg/L		05-MAY-21	R545024
Total Suspended Solids	<3.0		3.0	mg/L		04-MAY-21	R5450538
рН	7.89		0.10	pН		06-MAY-21	R545397
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC							
Nitrate (as N)	16.0		0.020	mg/L		29-APR-21	R5448439
Nitrate+Nitrite	10.0		0.000			04 MAX 04	
Nitrate and Nitrite (as N)	16.0		0.022	mg/L		04-MAY-21	
Nitrite in Water by IC Nitrite (as N)	<0.010		0.010	mg/L		29-APR-21	R5448439
_2581748-3 ELK RIVER UPSTREAM	10.010		0.010				
Sampled By: CARTER BARRETT on 28-APR-21 @ 10:10	n						
Matrix: WATER	0						
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		05-MAY-21	R5450818
Orthophosphate-Dissolved (as P)	<0.0050		0.0050	mg/L		29-APR-21	R5445956
Coliform Bacteria - Fecal	<1		1	CFU/100mL		29-APR-21	R5443972
Phosphorus (P)-Total	0.0051		0.0050	mg/L		05-MAY-21	R5450245
Total Suspended Solids	4.7		3.0	mg/L		04-MAY-21	R5450538
pH	8.25		0.10	pH		06-MAY-21	R5453975
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC							
Nitrate (as N)	2.22		0.020	mg/L		29-APR-21	R5448439
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	2.22		0.022	mg/L		04-MAY-21	
Nitrite in Water by IC	.0.040		0.040	m ~/l		29-APR-21	DE440400
	<0.010	_	0.010	mg/L		29-APR-21	R5448439
2581748-4 ELK RIVER @ OUTFALL	0						
Sampled By: CARTER BARRETT on 28-APR-21 @ 10:20	U						
Matrix: WATER							
Miscellaneous Parameters	0.050		0.050				
Ammonia, Total (as N)	< 0.050		0.050	mg/L		05-MAY-21	R5450818
Orthophosphate-Dissolved (as P)	0.0104		0.0050	mg/L		29-APR-21	R5445956
Coliform Bacteria - Fecal	<1		1	CFU/100mL		29-APR-21	R5443972
Phosphorus (P)-Total	0.0139		0.0050	mg/L		05-MAY-21	R545024
Total Suspended Solids	<3.0		3.0	mg/L		04-MAY-21	R5450538

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2581748-4 ELK RIVER @ OUTFALL							
Sampled By: CARTER BARRETT on 28-APR-21 @ 10	1·20						
Matrix: WATER	.20						
pH	8.09		0.10	рН		06-MAY-21	R5453975
NO2, NO3 and Sum of NO2/NO3	8.09		0.10			00-IVIA 1-2 1	K0403970
Nitrate in Water by IC							
Nitrate (as N)	1.21		0.020	mg/L		29-APR-21	R5448439
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	1.21		0.022	mg/L		04-MAY-21	
Nitrite in Water by IC	0.040		0.040				DE 4 40 400
Nitrite (as N)	<0.010		0.010	mg/L		29-APR-21	R5448439
_2581748-5 ELK RIVER DOWNSTREAM							
Sampled By: CARTER BARRETT on 28-APR-21 @ 10):30						
Matrix: WATER							
Miscellaneous Parameters	0.050		0.050				DEAFORAG
Ammonia, Total (as N)	< 0.050		0.050	mg/L		05-MAY-21	R5450818
Orthophosphate-Dissolved (as P)	<0.0050		0.0050	mg/L		29-APR-21	R5445956
Coliform Bacteria - Fecal	6		1	CFU/100mL		29-APR-21	R5443972
Phosphorus (P)-Total	0.0050		0.0050	mg/L		05-MAY-21	R5450245
Total Suspended Solids	<3.0		3.0	mg/L		05-MAY-21	R5450120
рН	8.29		0.10	pН		06-MAY-21	R5453975
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC	2.19		0.000			29-APR-21	R5448439
Nitrate (as N)	2.19		0.020	mg/L		29-APR-21	R5448439
Nitrate+Nitrite Nitrate and Nitrite (as N)	2.19		0.022	mg/L		04-MAY-21	
Nitrite in Water by IC	2.10		0.022			011001121	
Nitrite (as N)	<0.010		0.010	mg/L		29-APR-21	R5448439

L2581748 CONTD.... PAGE 4 of 5

Version: FINAL

ALS Test Code	Matrix	Test Description	Method Reference**
BOD-BC-CL	Water	Biochemical Oxygen Demand (BOD)	APHA 5210 B-5 day IncubO2 electrode
oxygen demand (BOD) a dissolved oxygen meter.	re determine Dissolved BC	d by diluting and incubating a sample for a spe	Biochemical Oxygen Demand (BOD)". All forms of biochemical cified time period, and measuring the oxygen depletion using a imple through a glass fibre filter prior to dilution. Carbonaceous for to incubation.
COD-T-COL-CL	Water	Chemical Oxygen Demand (COD)	APHA 5220 D Colorimetry
Samples are analyzed us	sing the close	d reflux colourimetric method	
FCC-MF-CL	Water	Fecal Coliform Count-MF	APHA 9222D
Coliform bacteria is enun nvolves an initial 24 hou	nerated by cu r incubation a	Ituring and colony counting. A known sample v	nbrane Filter Technique for Members of the Coliform Group". olume is filtered through a 0.45 micron membrane filter. The test te growth medium. This method is specific for thermotolerant I.
N2N3-CALC-CL	Water	Nitrate+Nitrite	CALCULATION
NH3-F-CL	Water	Ammonia by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
This analysis is carried o of Chemistry, "Flow-injec al.	ut, on sulfuric tion analysis	e acid preserved samples, using procedures mo with fluorescence detection for the determinati	odified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society on of trace levels of ammonium in seawater", Roslyn J. Waston et
NO2-IC-N-CL	Water	Nitrite in Water by IC	EPA 300.1 (mod)
norganic anions are ana	lyzed by Ion (Chromatography with conductivity and/or UV de	etection.
NO3-IC-N-CL	Water	Nitrate in Water by IC	EPA 300.1 (mod)
norganic anions are ana	lyzed by Ion (Chromatography with conductivity and/or UV de	etection.
P-T-COL-CL	Water	Total P in Water by Colour	APHA 4500-P PHOSPHORUS
This analysis is carried o persulphate digestion of		edures adapted from APHA Method 4500-P "P	hosphorus". Total Phosphorus is determined colourimetrically after
PH-CL	Water	pH	APHA 4500 H-Electrode
		ng a pH electrode. All samples analyzed by this analysis is recommended for pH where highly a	method for pH will have exceeded the 15 minute recommended accurate results are needed)
PO4-DO-COL-CL	Water	Diss. Orthophosphate in Water by Colour	APHA 4500-P PHOSPHORUS
		edures adapted from APHA Method 4500-P "P been lab or field filtered through a 0.45 micror	hosphorus". Dissolved Orthophosphate is determined membrane filter.
rss-cl	Water	Total Suspended Solids	APHA 2540 D-Gravimetric
This analysis is carried o (TSS) are determined by	ut using proc filtering a sa	edures adapted from APHA Method 2540 "Soli mple through a glass fibre filter, and by drying t	ds". Solids are determined gravimetrically. Total suspended solids he filter at 104 deg. C.
ALS test methods may	incorporate m	odifications from specified reference methods	to improve performance.
The last two letters of the	e above test c	code(s) indicate the laboratory that performed a	nalytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
CL	ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA
Chain of Custody Numbers:	

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
---------------	--------	-------------------------	--------------------

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS Environmental

www.alsenviro.com

ANALYTICAL CHEMISTRY & TESTING SERVICES

Vancouver BC, 198 Fort St. John BC, E Grand Prairie AB, § Fort McMurray AB, Edmonton AB, 993 Calgary AB, Bay 7, Saskatoon SK, 819

43 Fax: 604-253-6700 1-5587 178 Fax: 780-513-2191 1586

1586 '8 Fax: 780-437-2311 368-9878 Fax: 403-291-0298 /645 Fax: 306-668-8383 748

	PORT) :						CHAIN OF	CUS	то	DY	FO	RM										PAGE	0)F
OMPAN		FERNIE ALF	INE RESORT	UTILITIES	CORPOR	RATION	ATTN:	PATRICK MAJER	AN	ALYS	SIS R	EQU	<u>EST</u>	ED:		<u> </u>		′ T	···· [·		т			
DDRES			AVENUE SOL									Ì	, i												
ITY:	<u>.</u>	CALGARY			ALBER	TA	POSTAL CODE	T2T 0E2					·						· .1						
EL:		403 - 256 - 8	473		403 - 24		SAMPLER	Carter Barrett																	
		L	FARUC - Spri	ing EMS we	ek 5		QUOTE NO:		·																
0 NO.:				ALS CO	ONTACT:	Patryk Woyciak			_																
		<u></u>	HAR		EM/	AIL - ADDRES	gmajer@skird	<u></u>	£																
EPORT	FORMA	T:	☐ FAX	_	EXCEL	PDF			Coliforms										1						
	/O#	· · · · · · · · · · · · · · · · · · ·					COLLECTED					e e	<u>е</u>	3-N	N-SON	NO2-N	BOD5	٥						ES (sample	
		s	AMPLE IDENTI	FICATION		YYYY-MM-DD	TIME	MATRIX	Fecal	TSS	Hd	Ortho	Total	NH3-N	Ň	g	<u>B</u>	COD	•					ients, due d	ates, etc.,
<u> </u>		WWTP Influ	ent Routine	7	1 K 10 - 11	2021-04-28	10:00	Water		X	X		ŧ										9.9		
		WWTP Influ		J		2021-04-28	10:00	Water									X			L				<u> </u>	
-				3	1.1	2021-04-28	10:00	Water		Х	X			<u> </u>				X					/0.	<u>× ~</u>	
	<u></u> , <u>.</u>	WWTP Eff	ient BOD	4		2021-04-28	10:00	Water			<u> </u>						X				<u> </u>				
		WWTP Eff	uent Nutrients	5	7 .	2021-04-28	16:00	Water	<u> </u>			X	X	X	X	X							 		·
		WWTP Eff	uent Bacteriolo	gical 6		2021-04-28	10:00	Water	<u>×</u>	<u> </u>			L	ļ	L							$\left - \right $			
		Elk River U	pstream Routin	ie 7	tang t	2021-04-28	10:10	Water		X	X	<u> </u>			,					<u> </u>	<u> </u>		44	Toc ?	·
≻⊢		Elk River U	pstream Nutrie	nts P		2021-04-28	10:10	Water			<u> </u>	X	X	X	X	X					1.	$\left - \right $	1.1		
		Elk River U	pstream Bacter	riological 4	1	2021-04-28	10:10	Water	×	+				1	<u> </u>							+-		004	
붨			Outfall Routin	7.4		2021-04-28	10:20	Water		X	×			<u> </u>	<u> </u>					<u> </u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u> '	<u>J.</u>		
		Elk River @	Outfall Nutrie	nts //	£	2021-04-28	10:20	Water				X.	X	X	X	X			-	ļ	+	\vdash			
21		Elk River @	Outfall Bacter	riological /	2	2021-04-28	10.20	Water	<u>×</u>		<u> </u>	+		<u> </u>	<u>_</u>						┼──	+'		300	
ROT		Elk River D	ownstream Ro	utine /	3	2021-04-28	10:30	Water		X	X			+	<u> </u>	-	┣			<u></u>	+	┼──	\vdash	<u> </u>	
		Elk River D	ownstream Nu	trients	14	2021-04-28	<u> </u>	Water			+-	X	X	X	×	X				<u> </u>	+	<u> </u>	╂───		
		Elk River D	ownstream Ba	cteriologica	1/5	2021-04-28	10:30	Water	X		4-			+	+				-	<u> </u>	┼─	┢──	╂────		
·. [+	+	+		+				+	·	┼╌╴	╂────		
1 A A							<u></u>		<u>- </u>			-			+	+	. .			╂─	+	+		<u> </u>	
Ľ						ļ			<u> </u>					+			<u> </u>			<u> </u>	+-	+		······	
Ē	. *				<u>, </u>								+		-			-	╞╌╸	+	+	+	<u>}</u>		11
											-		<u> </u>		Ц	+			2021-	04-2	8		D BY:	DATE:	112
TURN		REQUIRED:	● ROU	TINE C) RUSH	SPECIFY DATE	:	(surcharge may apply)				LINQU rter Ba						17	45			$\overline{\mathcal{O}}$,R	TIME:	69
							MREPORT	provide details								+	DATE	+	<u>, ,</u>		REC		D BY:	DATE:	
	NVOICE							PLOANCE GORANO			The second							-						TIME:	1
	EFORM							RE-MAIL TO			FC	DRLA	BU	SE C	NLY	<u> </u>							·····	=	e(
SPECI	AL INSTR	UCTIONS:	wastewater			RESOLISIO					Co	oler Se	al Int	act?		Sam	ple Te	emper	ature:		_°Ċ		ling Meth	-	N
ł												Yes	N	o <u>:</u>	N/A	Froz	:en? _	Ye	s	_No			cepacks		None

G:/QUALITY/00_DOCUMENTS/10_AUTHORIZED/FORMS/CoC for ALS EMS.xt

FERNIE ALPINE RESORT UTILITIES CORPORATION ATTN: Patrick Majer 1505 - 17TH AVENUE SW CALGARY AB T2T 0E2 Date Received: 06-MAY-21 Report Date: 18-MAY-21 16:05 (MT) Version: FINAL

Client Phone: 800-258-7669

Certificate of Analysis

Lab Work Order #: L2584458 Project P.O. #: NOT SUBMITTED Job Reference: FARUC- SPRING EMS WEEK 6 C of C Numbers: Legal Site Desc:

May

Patryk Wojciak, B.Sc., P.Chem. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2584458-1 WWTP INFLUENT							
Sampled By: CB on 05-MAY-21 @ 12:00							
Matrix: WATER							
Miscellaneous Parameters							
Biochemical Oxygen Demand	37	BODP	20	mg/L		07-MAY-21	R5457277
Total Suspended Solids	43.8		3.0	mg/L		12-MAY-21	R5456918
рН	8.18		0.10	pН		15-MAY-21	R5458355
_2584458-2 WWTP EFFLUENT							
Sampled By: CB on 05-MAY-21 @ 12:00							
Matrix: WATER							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		13-MAY-21	R5457872
Biochemical Oxygen Demand	<2.0		2.0	mg/L		07-MAY-21	R5457277
Chemical Oxygen Demand	13		10	mg/L		11-MAY-21	R5456248
Orthophosphate-Dissolved (as P)	0.0635		0.0050	mg/L		07-MAY-21	R5454600
Coliform Bacteria - Fecal	<1		1	CFU/100mL		06-MAY-21	R5454524
Phosphorus (P)-Total	0.0688		0.0050	mg/L		12-MAY-21	R5456372
Total Suspended Solids	4.2		3.0	mg/L		12-MAY-21	R5456918
pH	8.16		0.10	рН		15-MAY-21	R5458355
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC	44.0		0.000			00 MAX 04	DE 455000
Nitrate (as N)	14.8		0.020	mg/L		06-MAY-21	R5455600
Nitrate+Nitrite Nitrate and Nitrite (as N)	14.8		0.022	mg/L		11-MAY-21	
Nitrite in Water by IC	14.0		0.022	iiig/E		11 100/01 21	
Nitrite (as N)	<0.010		0.010	mg/L		06-MAY-21	R5455600
L2584458-3 ELK RIVER UPSTREAM							
Sampled By: CB on 05-MAY-21 @ 12:00							
Matrix: WATER							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		13-MAY-21	R5457872
Orthophosphate-Dissolved (as P)	<0.0050		0.0050	mg/L		07-MAY-21	R5454600
Coliform Bacteria - Fecal	2	HTD	1	CFU/100mL		07-MAY-21	R5454524
Phosphorus (P)-Total	0.0126		0.0050	mg/L		12-MAY-21	R5456372
Total Suspended Solids	10.6		3.0	mg/L		12-MAY-21	R5456918
рН	8.32		0.10	рН		15-MAY-21	R5458355
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC							
Nitrate (as N)	1.62		0.020	mg/L		06-MAY-21	R5455600
Nitrate+Nitrite Nitrate and Nitrite (as N)	1.62		0.022	mg/L		11-MAY-21	
Nitrite in Water by IC	1.02		0.022	iiig/∟		11-100-41-21	
Nitrite (as N)	<0.010		0.010	mg/L		06-MAY-21	R5455600
_2584458-4 ELK RIVER @ OUTFALL			-				
Sampled By: CB on 05-MAY-21 @ 12:00							
Matrix: WATER							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		13-MAY-21	R5457872
Orthophosphate-Dissolved (as P)	<0.0050		0.0050	mg/L		07-MAY-21	R5454600
Coliform Bacteria - Fecal	1		1	CFU/100mL		06-MAY-21	R5454524
Phosphorus (P)-Total	0.0076		0.0050	mg/L		12-MAY-21	R5456372
Total Suspended Solids	4.8		3.0	mg/L		12-MAY-21	R5456918

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2584458-4 ELK RIVER @ OUTFALL							
Sampled By: CB on 05-MAY-21 @ 12:00							
Matrix: WATER							
pH	7.89		0.10	рН		17-MAY-21	R5458829
NO2, NO3 and Sum of NO2/NO3	7.09		0.10	pri		17-1017 1-21	K0400029
Nitrate in Water by IC							
Nitrate (as N)	1.74		0.020	mg/L		06-MAY-21	R5455600
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	1.74		0.022	mg/L		11-MAY-21	
Nitrite in Water by IC	-0.010		0.010	ma/l		06-MAY-21	DEAFECOO
Nitrite (as N)	<0.010		0.010	mg/L		00-IVIA 1-2 1	R5455600
_2584458-5 ELK RIVER DOWNSTREAM							
Sampled By: CB on 05-MAY-21 @ 12:00							
Matrix: WATER Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		13-MAY-21	R5457872
Orthophosphate-Dissolved (as P)	<0.0050		0.0050	mg/L		07-MAY-21	R5454600
Coliform Bacteria - Fecal	<1		1	CFU/100mL		06-MAY-21	R5454524
Phosphorus (P)-Total	0.0111		0.0050	mg/L		12-MAY-21	R5456372
Total Suspended Solids	10.6		3.0	mg/L		12-MAY-21	R5456918
рН	8.02		0.10	pH		17-MAY-21	R5458829
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC							
Nitrate (as N)	1.60		0.020	mg/L		06-MAY-21	R5455600
Nitrate+Nitrite	4.00		0.000				
Nitrate and Nitrite (as N)	1.60		0.022	mg/L		11-MAY-21	
Nitrite in Water by IC Nitrite (as N)	<0.010		0.010	mg/L		06-MAY-21	R5455600

- 1161 - ---

NH3-F-CL

Reference Information

Sample Parameter Qualifier Key:

Qualifier	Description
BODP	BOD dilution results differed by more than 30% RPD. Precision of reported BOD result may be less than usual.
HTD	Hold time exceeded for re-analysis or dilution, but initial testing was conducted within hold time.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Test Method References: ALS Test Code Matrix Method Reference** **Test Description** BOD-BC-CL Biochemical Oxygen Demand (BOD) APHA 5210 B-5 day Incub.-O2 electrode Water This analysis is carried out using procedures adapted from APHA Method 5210B - "Biochemical Oxygen Demand (BOD)". All forms of biochemical oxygen demand (BOD) are determined by diluting and incubating a sample for a specified time period, and measuring the oxygen depletion using a dissolved oxygen meter. Dissolved BOD (SOLUBLE) is determined by filtering the sample through a glass fibre filter prior to dilution. Carbonaceous BOD (CBOD) is determined by adding a nitrification inhibitor to the diluted sample prior to incubation. COD-T-COL-CL Chemical Oxygen Demand (COD) APHA 5220 D Colorimetry Water Samples are analyzed using the closed reflux colourimetric method FCC-MF-CL Water Fecal Coliform Count-MF APHA 9222D This analysis is carried out using procedures adapted from APHA Method 9222 "Membrane Filter Technique for Members of the Coliform Group". Coliform bacteria is enumerated by culturing and colony counting. A known sample volume is filtered through a 0.45 micron membrane filter. The test involves an initial 24 hour incubation at 44.5 degrees C of the filter with the appropriate growth medium. This method is specific for thermotolerant bacteria (Fecal) and is used for non-turbid water with a low background bacteria level. N2N3-CALC-CL Nitrate+Nitrite CALCULATION Water

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al.

NO2-IC-N-CL Water Nitrite in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

Ammonia by Fluorescence

NO3-IC-N-CL Water Nitrate in Water by IC

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

P-T-COL-CL Water Total P in Water by Colour

Water

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is determined colourimetrically after persulphate digestion of the sample.

PH-CLWaterpHAPHA 4500 H-ElectrodepH is determined in the laboratory using a pH electrode. All samples analyzed by this method for pH will have exceeded the 15 minute recommended
hold time from time of sampling (field analysis is recommended for pH where highly accurate results are needed)

PO4-DO-COL-CL Water Diss. Orthophosphate in Water by Colour APHA 4500-P PHOSPHORUS

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter.

TSS-CL Water Total Suspended Solids

APHA 2540 D-Gravimetric

APHA 4500-P PHOSPHORUS

EPA 300.1 (mod)

J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total suspended solids (TSS) are determined by filtering a sample through a glass fibre filter, and by drying the filter at 104 deg. C.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
CL	ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA
Chain of Custody Numbers:	

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
---------------	--------	-------------------------	--------------------

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS Environmental

ANALYTICAL CHEMISTRY & TESTING SERVICES

www.alsenviro.com

Vancouver BC, 1988 Triumph Street, V5L 1K5, Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253-6700 Fort St. John BC, Box 256, 9831 - 98A Avenue, V1J 6W7, Tel: 250-261-5517 Fax: 250-261-5587 Grand Prairie AB, 9595 - 111 Street, T8V 5W1, Tel: 780-539-5196 Toll Free: 1-800-668-9878 Fax: 780-513-2191 Fort McMurray AB, Bay 1, 245 Macdonald Cr, T9H 4B5, Tel: 780-791-1524 Fax: 780-791-1586 Edmonton AB, '9936 - 67th Avenue, T6E 0P5, Tel: 780-413-5227 Toll Free: 1-800-668-9878 Fax: 780-437-2311 Calgary AB, Bay 7, 1313 - 44th,Avenue NE, T2E 6L5, Tel: 403-291-9897 Toll Free: 1-800-668-9878 Fax: 403-291-0298 Saskatoon SK, 819 - 58th Street East, S7K 6X5, Tel: 306-668-8370 Toll Free: 1-800-667-7645 Fax: 306-668-8383

SEN	END REPORT TO:																		PAGE		OF								
сом	PANY:		FERNIE AL	PINE RESORT	UTILITIES	CORPO	RATION	ATTN:	PATRICK MAJER	AN/	ALYS		EQU	JEST	ED:						r		 -7						
ADD	RESS:		1505 - 17 TH	AVENUE SOU	TH WEST				· · · · · · · · · · · · · · · · · · ·					1		*						اند	'						
CITY	:		CALGARY		PROV:	ALBER	ТА	POSTAL CODE:	T2T 0E2	_																			
TEL: 4		403 - 256 - 8473 FAX: 403 - 2			403 - 24	4 - 3774	SAMPLER:	Carter Barrett																					
PRO	JECT NAM	ΛE A	ND NO.:	FARUC – Sprin	•		QUOTE NO: Q33058								L25	5844	458-	.co	FC										
PON					ALS CC	NTACT:	Patryk Woyciak																						
					COPY	🖸 EM/	AIL - ADDRES	pmajer@skirc	r.com	SC SC				100.00vvv 4					1										
REP	ORT FOR	MAT	:	☐ FAX	_	XCEL	PDF	OTHER:		Coliforms									1										
	WO#							COLLECTED		- <u></u> 2			Р	٩	z	z	z	2						NOTES	S (samp)	e specific			
			5	SAMPLE IDENTIFICATION			YYYY-MM-DD	TIME	MATRIX	Fecal	TSS	E	Ortho	Total	NH3-N	N-60N	NO2-N	BOD5	cop							lates, etc.)			
		7	WWTP Influent Routine				2021-05-05	A start	Water		X	X								• • •				8.20	<u> </u>				
		5	WWTP Influ	WWTP Influent BOD 2			2021-05-05		Water									х											
		7	WWTP Efflu	uent Routine			2021-05-05		Water		×X	X					•	•••	X					10.1	¢C	-			
	- 1	_	WWTP Efflu	P Effluent BOD 4/			2021-05-05		Water									х	_										
-	\prec		WWTP Efflu	fluent Nutrients 5			2021-05-05		Water		•	e f	X	X	X	Х	X						· · · ·						
		\angle	WWTP Efflu	P Effluent Bacteriological			2021-05-05		Water	Х																			
		7	Elk River U	River Upstream Routine			2021-05-05		Water		• X •	X							•				na i ₽s	5.1	$\lfloor \cdot C$				
Σ	3 (Elk River U	stream Nutrients			k River Upstream Nutrients			2021-05-05		Water				х	Х	Х	х	Х									
FOR LAB USE ONLY		\downarrow	Elk River Upstream Bacteriological 9				2021-05-05		Water	X								· .											
ЫS		7	Elk River @	Outfall Routine	6		2021-05-05		Water		х	x												1,	<u>0 (</u>				
ABL	Ч.	$\langle \$	Elk River @	Outfall Nutrient	is //		2021-05-05		Water		<u>.</u>		Х	∵:X	X	Х	Х	· . 1											
Ч Г		1	Elk River @	Outfall Bacterio	ological)	2021-05-05		Water	X																			
요		/	Elk River D	ownstream Rout	tine 1J		2021-05-05		Water	·	∶x	X					· .							5.4	5 %	•			
	5		Elk River D	ownstream Nutri	ients 14	/	2021-05-05		Water				х	X	X	Х	х					\vdash							
		-f	Elk River D	ownstream-Bact	eriotogical	15	2021-05-05		Water	×																			
				***					· • • • • • • • • • • • • • • • • • • •	<u> </u>												<u></u>			<u></u>	·····			
									<u> </u>		<u> </u>				· · ·							<u> </u>	 						
	· .												L								ļ	_	\square	<u>-</u>					
									ę.			294 201		. 'z-								<u> </u>	↓		·				
									<u> </u>													<u> </u>			·				
	TURN AROUND REQUIRED:						(surcharge may apply)					SHED	BY:			ATE:	2				EIVED		ATE:	<u>576</u>					
												Cart	er Ba	rrett	-			TIME:			11:45	+	Ωķ		IME:	OST			
┣	D INVOIC			-				M REPORT (pr	ovide details	•		RELI	NQUI	SHED	BY:		DATE:			IREC	EIVED		ATE:						
	DICE FOR			HARDO								EC						TIME:			7	Ļ	_	TI	IME:				
SPE	SPECIAL INSTRUCTIONS: PLEASE FAX A COPY OF THE RESULTS TO 250-423-4652 OR E-MAIL TO wastewater@skifernie.com								<u> </u>	_	B US			Sam	ole Ter	npera	ture:	4	°c	Cooli	ng Method?	. <u></u>							
										Cooler Seal Intact? Sample Temperature:C									IcepacksIceNone										

FERNIE ALPINE RESORT UTILITIES CORPORATION ATTN: Patrick Majer 1505 - 17TH AVENUE SW CALGARY AB T2T 0E2 Date Received:24-JUN-21Report Date:09-JUL-21 14:39 (MT)Version:FINAL

Client Phone: 800-258-7669

Certificate of Analysis

Lab Work Order #: L2605863 Project P.O. #: NOT SUBMITTED Job Reference: WASTEWATER- JUNE 2021 MONTHLY EMS C of C Numbers: Legal Site Desc:

May

Patryk Wojciak, B.Sc., P.Chem. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2605863-1 WWTP INFLUENT							
Sampled By: CB on 23-JUN-21 @ 11:00							
Matrix: WATER							
Miscellaneous Parameters							
Biochemical Oxygen Demand	36		20	mg/L		25-JUN-21	R5506802
Total Suspended Solids	42.6		3.0	mg/L		29-JUN-21	R5506840
рН	7.56		0.10	рН		06-JUL-21	R5513195
L2605863-2 WWTP EFFLUENT							
Sampled By: CB on 23-JUN-21 @ 11:00							
Matrix: WATER							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		05-JUL-21	R5513087
Biochemical Oxygen Demand	2.3		2.0	mg/L		25-JUN-21	R5506802
Orthophosphate-Dissolved (as P)	0.163	DLHC	0.010	mg/L		24-JUN-21	R5501396
Coliform Bacteria - Fecal	<1		1	CFU/100mL		24-JUN-21	R5503977
Phosphorus (P)-Total	0.209		0.050	mg/L		09-JUL-21	R5516508
Total Suspended Solids	<3.0		3.0	mg/L		29-JUN-21	R5506840
pH	8.06		0.10	pН		06-JUL-21	R5513195
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC							
Nitrate (as N)	15.5		0.020	mg/L		24-JUN-21	R5505819
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	15.5		0.022	mg/L		29-JUN-21	
Nitrite in Water by IC Nitrite (as N)	<0.010		0.010	mg/L		24-JUN-21	R5505819
	<0.010		0.010	ing/L		24 0011 21	10000010

Sample Parameter Qualifier Key:

Qualifier	Description		
DLHC	Detection Limit Raise	ed: Dilution required due to high concentration	of test analyte(s).
MS-B	Matrix Spike recover	y could not be accurately calculated due to high	gh analyte background in sample.
est Method R	eferences:		
ALS Test Code	Matrix	Test Description	Method Reference**
BOD-BC-CL	Water	Biochemical Oxygen Demand (BOD)	APHA 5210 B-5 day IncubO2 electrode
This analysis is o oxygen demand dissolved oxyger	(BOD) are determined in meter. Dissolved BO	edures adapted from APHA Method 5210B - "I by diluting and incubating a sample for a spe	Biochemical Oxygen Demand (BOD)". All forms of biochemical scified time period, and measuring the oxygen depletion using a ample through a glass fibre filter prior to dilution. Carbonaceous
FCC-MF-CL	Water	Fecal Coliform Count-MF	APHA 9222D
Coliform bacteria involves an initia	a is enumerated by cul I 24 hour incubation at	turing and colony counting. A known sample	mbrane Filter Technique for Members of the Coliform Group". volume is filtered through a 0.45 micron membrane filter. The test ate growth medium. This method is specific for thermotolerant el.
N2N3-CALC-CL	Water	Nitrate+Nitrite	CALCULATION
NH3-F-CL	Water	Ammonia by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
			odified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society on of trace levels of ammonium in seawater", Roslyn J. Waston et
NO2-IC-N-CL	Water	Nitrite in Water by IC	EPA 300.1 (mod)
Inorganic anions	are analyzed by Ion C	Chromatography with conductivity and/or UV d	etection.
NO3-IC-N-CL	Water	Nitrate in Water by IC	EPA 300.1 (mod)
Inorganic anions	are analyzed by Ion C	Chromatography with conductivity and/or UV d	etection.
P-T-COL-CL	Water	Total P in Water by Colour	APHA 4500-P PHOSPHORUS
	carried out using proce stion of the sample.	edures adapted from APHA Method 4500-P "F	Phosphorus". Total Phosphorus is determined colourimetrically afte
PH-CL	Water	рН	APHA 4500 H-Electrode
		g a pH electrode. All samples analyzed by thi analysis is recommended for pH where highly	s method for pH will have exceeded the 15 minute recommended accurate results are needed)
PO4-DO-COL-CI	Water	Diss. Orthophosphate in Water by Colour	APHA 4500-P PHOSPHORUS
		edures adapted from APHA Method 4500-P "F been lab or field filtered through a 0.45 micro	hosphorus". Dissolved Orthophosphate is determined nembrane filter.
TSS-CL	Water	Total Suspended Solids	APHA 2540 D-Gravimetric
		edures adapted from APHA Method 2540 "Sol nple through a glass fibre filter, and by drying	ids". Solids are determined gravimetrically. Total suspended solids the filter at 104 deg. C.
* ALS test metho	ds may incorporate m	odifications from specified reference methods	to improve performance.
The last two lette	ers of the above test c	ode(s) indicate the laboratory that performed a	analytical analysis for that test. Refer to the list below:
Laboratory Defi	nition Code Labo	pratory Location	

CL	ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA

Chain of Custody Numbers:

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
---------------	--------	------------------	--------------------

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS Environmental

www.alsenviro.com

ANALYTICAL CHEMISTRY & TESTING SERVICES

Fort St. John BC Grand Prairie AE Fort McMurray A Edmonton AB, 1 Calgary AB, Ba Saskatoon SK,

Vancouver BC, 1

-261-5587 +9878 Fax: 780-513-2191 €1-1586 9878 Fax: 780-437-2311 00-668-9878 Fax: 403-291-0298 37-7645 Fax: 306-668-8383

SEND REPORT TO: CHAIN OF CUSTOUT FORM																	PAGE		OF							
CON	IPANY:	FERNIE AL	PINE RESORT	UTILITIES	CORPOR	RATION	ATTN:	PATRICK MAJER	AN	ALY	'SIS I	REQ	UES'	TED:												
ADD	RESS:	1505 - 17TH	AVENUE SOL																				[
CITY	<u>/:</u>	CALGARY		PROV:	ALBERT	A	POSTAL CODE:	T2T 0E2											• •							
TEL:		403 - 256 - 1	403 - 256 - 8473 FAX: 403 - 24		403 - 244	4 - 3774	SAMPLER:	Carter Barrett					(·						· .		'					
PRO	PROJECT NAME AND NO .: Wastewater -June 2021 Monthly		Ionthly EN	MS	QUOTE NO:	Q33058																				
PO NO.:		ALS CO	NTACT: F	Patryk Wojciak																						
REP				🗹 EMA	IL - ADDRES	pmajer@skirc	r.com	- °		* .									 .	2.						
			☐ FAX	🗆 E	EXCEL	PDF			Coliforms		•						-	l							• • •	
	WO#					DATE / TIME	COLLECTED	MATCHY	ы Б			оP	E E	Z	z	z	5						NO ⁷	(FS (sa	mple spec	ific
			SAMPLE IDENTIFICATION			YYYY-MM-DD	DD TIME	MATRIX S	Fecal	TSS	Ha	Ortho	Total P	NH3-N	NO3-N	NO2-N	BOD5	cop				.			ie dates, e	
		WWTP Influ	ent Routine			2021-06-23	11:00	Water		X	X													+ <u>;</u>		
		WWTP Influent BOD				2021-06-23	11:00	Water									Х							<u> </u>		
		WWTP Efflu	uent Routine	••		2021-06-23	11.00	Water		X	Х				, ,											
		WWTP Efflu	uent BOD			2021-06-23	11:00	Water									X									
		WWTP Efflu	luent Nutrients			2021-06-23	11:00	Water			.*	X	X	X	х	х							,			
		WWTP Efflu	uent Bacteriologi	ical		2021-06-23	11:00	Water	X															-		
																÷										
Γ						•													_			\square				
FOR LAB USE ONLY		-		·. ·		*					ŀ	ľ														_
USE																										
AB																										
RL																									· · · ·	
Б				-				. N. 1																		
								•																		
		••••••••••••••••••••••••••••••••••••••															-				_					
									÷=														******			
											·															
								· ·																		
		•						· · · · ·									-									
									1											_						
TUR		QUIRED:		NE O R	RUSH s	SPECIFY DATE:		(surcharge may apply)			RELI	NQUIS	SHED	BY:		D/	ATE:	June	23, 2	2021	RECE		BY: I	DATE:	241	60
											Carte	er Ba	rrett			T	IME:		1	1:45	6. 7	1	1	TIME:	<u>S.</u>	25
	D INVOICE TO						REPORT (pro	ovide details			RELI	NQUIS	SHED	BY:		D	DATE: REC					IVED	BY: [DATE		
	ICE FORMAT:] PDF											T	ME:						1	TIME:		
SPECIAL INSTRUCTIONS: PLEASE FAX A COPY OF THE RESULTS TO 250-423-465 wastewater@skifernie.com							-423-4652 OR E	-MAIL TO				R LAE								\mathcal{F}						
											Cooler Seal Intact? Sample Temperature: YesNo N/A Frozen?YesNo								C Cooling Method?							

G:/QUALITY/00_DOCUMENTS/10_AUTHORIZED/FORMS/CoC for ALS Plant EMS.xls

FERNIE ALPINE RESORT UTILITIES CORPORATION ATTN: Patrick Majer 1505 - 17TH AVENUE SW CALGARY AB T2T 0E2 Date Received: 15-JUL-21 Report Date: 22-JUL-21 11:12 (MT) Version: FINAL

Client Phone: 800-258-7669

Certificate of Analysis

Lab Work Order #: L2614406 Project P.O. #: NOT SUBMITTED Job Reference: WASTEWATER- JULY 2021 MONTHLY EMS C of C Numbers: Legal Site Desc:

May

Patryk Wojciak, B.Sc., P.Chem. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2614406-1 WWTP INFLUENT							
Sampled By: CARTGER BARRETT on 14-JUL-21 @	11:00						
Matrix: WATER							
Miscellaneous Parameters							
Biochemical Oxygen Demand	56		20	mg/L		16-JUL-21	R5526304
Total Suspended Solids	97.1		3.0	mg/L		20-JUL-21	R5526611
pH	7.62		0.10	pH		18-JUL-21	R5524948
L2614406-2 WWTP EFFLUENT							
Sampled By: CARTGER BARRETT on 14-JUL-21 @	11:00						
Matrix: WATER							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		16-JUL-21	R5525642
Biochemical Oxygen Demand	<2.0		2.0	mg/L		16-JUL-21	R5526304
Orthophosphate-Dissolved (as P)	0.0910		0.0050	mg/L		17-JUL-21	R5524648
Coliform Bacteria - Fecal	3		1	CFU/100mL		15-JUL-21	R5524256
Phosphorus (P)-Total	0.0866		0.0050	mg/L		21-JUL-21	R5526837
Total Suspended Solids	<3.0		3.0	mg/L		20-JUL-21	R5526611
pH	7.69		0.10	рН		18-JUL-21	R5524948
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC							
Nitrate (as N)	19.3		0.020	mg/L		15-JUL-21	R5524506
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	19.3		0.022	mg/L		17-JUL-21	
Nitrite in Water by IC Nitrite (as N)	<0.010		0.010	mg/L		15-JUL-21	R5524506
	<0.010		0.010	iiig/L		13-302-21	K3524500

L2614406 CONTD

PAGE 3 of 4 Version: FINAL

Test Method References: ALS Test Code Matrix Method Reference** **Test Description** BOD-BC-CL Water Biochemical Oxygen Demand (BOD) APHA 5210 B-5 day Incub.-O2 electrode This analysis is carried out using procedures adapted from APHA Method 5210B - "Biochemical Oxygen Demand (BOD)". All forms of biochemical oxygen demand (BOD) are determined by diluting and incubating a sample for a specified time period, and measuring the oxygen depletion using a dissolved oxygen meter. Dissolved BOD (SOLUBLE) is determined by filtering the sample through a glass fibre filter prior to dilution. Carbonaceous BOD (CBOD) is determined by adding a nitrification inhibitor to the diluted sample prior to incubation. FCC-MF-CL Fecal Coliform Count-MF Water This analysis is carried out using procedures adapted from APHA Method 9222 "Membrane Filter Technique for Members of the Coliform Group". Coliform bacteria is enumerated by culturing and colony counting. A known sample volume is filtered through a 0.45 micron membrane filter. The test involves an initial 24 hour incubation at 44.5 degrees C of the filter with the appropriate growth medium. This method is specific for thermotolerant bacteria (Fecal) and is used for non-turbid water with a low background bacteria level. N2N3-CALC-CL Water Nitrate+Nitrite CALCULATION NH3-F-CL Water Ammonia by Fluorescence J. ENVIRON. MONIT., 2005, 7, 37-42, RSC This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et aL NO2-IC-N-CI Water Nitrite in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. NO3-IC-N-CL Water Nitrate in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. P-T-COL-CL **APHA 4500-P PHOSPHORUS** Water Total P in Water by Colour This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is determined colourimetrically after persulphate digestion of the sample. PH-CL Water APHA 4500 H-Electrode pН pH is determined in the laboratory using a pH electrode. All samples analyzed by this method for pH will have exceeded the 15 minute recommended hold time from time of sampling (field analysis is recommended for pH where highly accurate results are needed) PO4-DO-COI -CI Water Diss. Orthophosphate in Water by Colour APHA 4500-P PHOSPHORUS This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. TSS-CI Water **Total Suspended Solids** APHA 2540 D-Gravimetric This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total suspended solids (TSS) are determined by filtering a sample through a glass fibre filter, and by drying the filter at 104 deg. C. ** ALS test methods may incorporate modifications from specified reference methods to improve performance. The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
CL	ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA
Chain of Custody Numbers:	

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
---------------	--------	------------------	--------------------

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS Environmental

ANALYTICAL CHEMISTRY & TESTING SERVICES

م بدی بر در در در در ا

www.alsenviro.com

Vancouver BC, 1988 Triumph Street, V5L 1K5, Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253-6700 Fort St. John BC, Box 256, 9831 - 98A Avenue, V1J 6W7, Tel: 250-261-5517 Fax: 250-261-5587 Grand Prairie AB, 9595 - 111 Street, T8V 5W1, Tel: 780-539-5196 Toll Free: 1-800-668-9878 Fax: 780-513-2191 Fort McMurray AB, Bay 1, 245 Macdonald Cr, T9H 4B5, Tel: 780-791-1524 Fax: 780-791-1586 Edmonton AB, 9936 - 67th Avenue, T6E 0P5, Tel: 780-413-5227 Toll Free: 1-800-668-9878 Fax: 780-437-2311 Calgary AB, Bay 7, 1313 - 44th Avenue NE, T2E 6L5, Tel: 403-291-9897 Toll Free: 1-800-668-9878 Fax: 403-291-0298 Saskatoon SK, 819 - 58th Street East, S7K 6X5, Tel: 306-668-8370 Toll Free: 1-800-667-7645 Fax: 306-668-8383

CHAIN OF CUSTODY FORM

PAGE OF

SEN	D REPORT TO	D:					CHAIN OF			זט	ru	RIV										PAGE		OF	
сом	PANY:	FERNIE ALF	NE RESORT	UTILITIES CORP	ORATION	ATTN:	PATRICK MAJER	AN	ALY	SIS F	REQU	IEST	ED:				r							·	
ADD	RESS	1505 - 17TH	AVENUE SOU	TH WEST								•										1			
СІТҮ	:	CALGARY		PROV: ALBE	RTA	POSTAL CODE:	T2T 0E2	-				•		× :											
TEL:		403 - 256 - 8	473	FAX: 403 -	244 - 3774	SAMPLER:	Carter Barrett							-			-	· .							
			Wastewater -J	uly 2021 Monthly I	EMS	QUOTE NO:	Q33058							· · .				- 41 				1			
PON				ALS CONTACT	Patryk Wojciak			1						* *						,					
			ि HARI			omajer@skirc	r.com	s.	1									·							
REP	ORT FORMAT							Coliforms		• •		- 		, .						$\frac{1}{2}$					
<u> </u>	WO#		☐ FAX				r*	З.			م	۵.	-	z	z			·		•					
	VV0#	s	AMPLE IDENTIF	ICATION		COLLECTED	MATRIX	Fecal	TSS	+	Ortho	Total	NH3-N	N-EON	NO2-N	BOD5	8						ES (samp ents, due		
<u> </u>	·				YYYY-MM-DD	TIME	Mintor	<u>l</u>	н Х	ы Та	0	Ĕ	z	Z	z		0					10.	3%		
		WWTP Influ WWTP Influ			2021-07-14	11:00	Water Water		<u>^</u>				·	5		x	-			· · ·		<u>·0·</u>	<u> </u>	<u> </u>	
					2021-07-14	11:00				x							-+			· •••• ;	_	15	76		
		WWTP Efflu	i	i dan tatur	2021-07-14	11:00	Water	· ·	X	^	·	5		. <u>.</u>		x				<u> </u>		<u> </u>	<u> </u>	<u> </u>	
		WWTP Efflu			2021-07-14	11:00	Water			-				·	x	<u> </u>									
		· · · · ·	ent Nutrients	<u> </u>	2021-07-14	11:00	Water				, X	X	X	X											
:		WWTP Efflu	ent Bacteriolog		2021-07-14	11:00	Water	X																	
			<u> </u>									2													
上								<u> </u>																	
õ			، معم بيدة م مع مع مع	سمية تصالية عملية إلى سرية		$\sum_{i=1}^{n} \frac{1}{i} \sum_{i=1}^{n} \frac{1}{i} \sum_{i$		<u> </u>	<u>.</u>					•		· · ·									
FOR LAB USE ONLY		- 111			A A A A A A A A A A A A A A A A A A A											_	-								
AB					<u>h h h h h ha h h mha</u>	1	· · · · · · · · · · · · · · · · · · ·		: . 								<u> </u>								
КГ		II I	1.26	614406-COF	С					-															
Щ		1	225			2		-								<u> </u>									
		*************							<u> </u>																
								ن يوجع ا																	
							·																		
ŀ	· .																								
	· · ·																							<u></u>	
TUB			ROUTI		SPECIFY DATE:		(surcharge may apply)			RELI	INQUIS	SHED	BY:	_	D/	ATE:	July	14, 2	021	RECE	IVED	BY:		1	\geq
	N AROUND R	EQUIRED:	- é							Cart	er Ba	rrett			т	ME:		1	1:45	7	2			<u>7</u>	\mathcal{Q}
SEN	D INVOICE TO):	SAME A	AS REPOR DI	FERENT FROM	MREPORT (pr	ovide details			RÉLI	INQUIS	SHED	BY:		D/	ATE:				RECE	IVED	B₩	DATE:		
INVO	CE FORMAT	:			F 🗌 FA	x									т	ME:							TIME:		
SPE	CIAL INSTRUC	CTIONS:		A COPY OF THE	RESULTS TO 250	0-423-4652 OR E	-MAIL TO			FOF	R LAE	3 US	EON	ΙLΥ					K						
			wastewater@s	kifernie.com							er Sea				Sampl	e Tem	perat	ure:		°C		ng Methoo		N	
										Υ	es _	NO	^	I/A	Frozer	1?	Yes		NO			epacks	ice	None	

G:/QUALITY/00_DOCUMENTS/10_AUTHORIZED/FORMS/CoC for ALS Plant EMS.xls

FERNIE ALPINE RESORT UTILITIES CORPORATION ATTN: Patrick Majer 1505 - 17TH AVENUE SW CALGARY AB T2T 0E2 Date Received:01-SEP-21Report Date:13-SEP-21 14:02 (MT)Version:FINAL

Client Phone: 800-258-7669

Certificate of Analysis

Lab Work Order #: L2634193 Project P.O. #: NOT SUBMITTED Job Reference: WASTEWATER- AUGUST 2021 MONTHLY EMS C of C Numbers: Legal Site Desc:

May

Patryk Wojciak, B.Sc., P.Chem. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2634193-1 WWTP INFLUENT							
Sampled By: CB on 31-AUG-21 @ 14:30							
Matrix: WATER							
Miscellaneous Parameters							
Biochemical Oxygen Demand	179	BODP	75	mg/L		03-SEP-21	R5580967
Total Suspended Solids	672		8.0	mg/L		02-SEP-21	R5578664
pH	7.70		0.10	pH		08-SEP-21	R5581442
L2634193-2 WWTP EFFLUENT							
Sampled By: CB on 31-AUG-21 @ 14:30							
Matrix: WATER							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		12-SEP-21	R5583322
Biochemical Oxygen Demand	<2.0		2.0	mg/L		03-SEP-21	R5580967
Orthophosphate-Dissolved (as P)	0.239	DLHC	0.025	mg/L		01-SEP-21	R5576176
Coliform Bacteria - Fecal	<1		1	CFU/100mL		01-SEP-21	R5576397
Nitrate (as N)	41.3	HTD	0.020	mg/L		01-SEP-21	R5583116
Nitrate and Nitrite (as N)	41.3		0.022	mg/L		13-SEP-21	
Nitrite (as N)	0.017		0.010	mg/L		01-SEP-21	R5583116
Phosphorus (P)-Total	0.254	DLHC	0.050	mg/L		07-SEP-21	R5578238
Total Suspended Solids	<3.0		3.0	mg/L		02-SEP-21	R5578664
pH	7.73		0.10	pH		08-SEP-21	R5581442

Description

Reference Information

Sample Parameter Qualifier Key:

Our lifting

Quaimer	Description
BODP	BOD dilution results differed by more than 30% RPD. Precision of reported BOD result may be less than usual.
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
HTD	Hold time exceeded for re-analysis or dilution, but initial testing was conducted within hold time.

Test Method References: ALS Test Code Matrix Method Reference** **Test Description** BOD-BC-CL Biochemical Oxygen Demand (BOD) Water APHA 5210 B-5 day Incub.-O2 electrode This analysis is carried out using procedures adapted from APHA Method 5210B - "Biochemical Oxygen Demand (BOD)". All forms of biochemical oxygen demand (BOD) are determined by diluting and incubating a sample for a specified time period, and measuring the oxygen depletion using a dissolved oxygen meter. Dissolved BOD (SOLUBLE) is determined by filtering the sample through a glass fibre filter prior to dilution. Carbonaceous BOD (CBOD) is determined by adding a nitrification inhibitor to the diluted sample prior to incubation. FCC-MF-CL Water Fecal Coliform Count-MF APHA 9222D This analysis is carried out using procedures adapted from APHA Method 9222 "Membrane Filter Technique for Members of the Coliform Group". Coliform bacteria is enumerated by culturing and colony counting. A known sample volume is filtered through a 0.45 micron membrane filter. The test involves an initial 24 hour incubation at 44.5 degrees C of the filter with the appropriate growth medium. This method is specific for thermotolerant bacteria (Fecal) and is used for non-turbid water with a low background bacteria level. N2N3-CALC-CL Water Nitrate+Nitrite CALCULATION NH3-F-CL Water Ammonia by Fluorescence J. ENVIRON. MONIT., 2005, 7, 37-42, RSC This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al. NO2-IC-N-CL Water Nitrite in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. NO3-IC-N-CI Water Nitrate in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. P-T-COL-CL Total P in Water by Colour APHA 4500-P PHOSPHORUS Water This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is determined colourimetrically after persulphate digestion of the sample. PH-CI Water APHA 4500 H-Electrode pН pH is determined in the laboratory using a pH electrode. All samples analyzed by this method for pH will have exceeded the 15 minute recommended hold time from time of sampling (field analysis is recommended for pH where highly accurate results are needed) PO4-DO-COL-CL Water Diss. Orthophosphate in Water by Colour APHA 4500-P PHOSPHORUS This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. TSS-CL Total Suspended Solids APHA 2540 D-Gravimetric Water This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total suspended solids (TSS) are determined by filtering a sample through a glass fibre filter, and by drying the filter at 104 deg. C. ** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
CL	ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA
Chain of Custody Numbers:	

L2634193 CONTD.... PAGE 4 of 4 Version: FINAL

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
---------------	--------	------------------	--------------------

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS Environmental

ANALYTICAL CHEMISTRY & TESTING SERVICES

www.alsenviro.com

Vancouver BC, 1988 Triumph Street, V5L 1K5, Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253-6700 Fort St. John BC, Box 256, 9831 - 98A Avenue, V1J 6W7, Tel: 250-261-5517 Fax: 250-261-5587 Grand Prairie AB, 9595 - 111 Street, T8V 5W1, Tel: 780-539-5196 Toll Free: 1-800-668-9878 Fax: 780-513-2191 Fort McMurray AB, Bay 1, 245 Macdonald Cr, T9H 4B5, Tel: 780-791-1524 Fax: 780-791-1586 Edmonton AB, 9936 - 67th Avenue, T6E 0P5, Tel: 780-413-5227 Toll Free: 1-800-668-9878 Fax: 780-437-2311 Calgary AB, Bay 7, 1313 - 44th Avenue NE, T2E 6L5, Tel: 403-291-9897 Toll Free: 1-800-668-9878 Fax: 403-291-0298 Saskatoon SK, 819 - 58th Street East, S7K 6X5. Tel: 306-668-8370 Toll Free: 1-800-667-7645 Fax: 306-668-8383

SEN	D REPORT T	0:					CHAIN OF	<u>= CUS</u>	STC	DY	<u>FC</u>	<u>PRN</u>	[منصفحوفوف	PAGE	0)F
сом	PANY:	FERNIE AL	PINE RESORT	UTILITIES CO	RPORATION	ATTN:	PATRICK MAJER	AN		SIS	REQ	JEST	ED:											
ADD	RESS:	1505 - 17TH	AVENUE SOL	TH WEST																				
CITY	:	CALGARY		PROV: AL	BERTA	POSTAL CODE:	T2T 0E2													1	1			
TEL:		403 - 256 - 1	8473	FAX: 40	3 - 244 - 3774	SAMPLER:	Carter Barrett					11 11			1	ŀ								
PRO.	JECT NAME	AND NO.:	Wastewater -A	-		QUOTE NO:												 	H I II		1	I		
PON	I O.:	1		ALS CONT	ACT: Patryk Wojciak																 			
			- HARI	DCOPY 🔽	EMAIL - ADDRES	pmajer@skirc	r.com				2			L2	634	102								
REP	ORT FORMAT	τ:						form			ì	_				193	-CC	JFC						
	WO#	1	☐ FAX					Coliforms			٩	٩	2	z	z		1							
		5	SAMPLE IDENTIF	ICATION	YYYY-MM-DD	TIME	MATRIX	Fecal	TSS	Hd	Ortho	Total P	NH3-N	NO3-N	NO2-N	BOD5	COD		ĺ	1	;	NOTES comments		
		WWTP Infl	ent Routine		2021-08-31	14:30	Water	<u>_</u>	X	X			2	2	2		0			+	<u> </u>	16.80	"	
		WWTP Influ			2021-08-31	14:30	Water			<u> </u>	+					X				+	+	10.0 -		
			uent Routine	·	2021-08-31	14:30	Water		x	x										+	┼──	17.90	<u> </u>	
				· · · · · · · · · · · · · · · · · · ·	2021-08-31	14:30	Water	:								x			† ·	\vdash	┢			
		· · · · · · · · · · · · · · · · · · ·	uent Nutrients	,	2021-08-31	14:30	Water		<u> </u> .		x	X.	x	x	x				-	+	+			<u> </u>
		·	uent Bacteriolog	ical	2021-08-31	14:30	Water	×			<u> </u>	<u>^</u>	. ^	~						 	┼──	· · · ·	ş.	·
			_					$-\uparrow$	+ -								- ·			\vdash	+			
≻					·	· · · · ·				+						·		-		<u>+</u> `	 			
FOR LAB USE ONLY	· · · · · -								-	1							•			<u> </u>			·	
ы Ш							- <u> </u>			+					·					┼──	<u> .</u>	·		
ы Ш					· .				<u> </u>					•						<u> </u>	+			
≤					· *=	<u></u>				+										┼──	\vdash			
Ю,		· · ·							+	+							•			+	<u> </u>			· · · ·
					· · · · · · · · · · · · · · · · · · ·							<u>.</u>							·	<u> ·</u>	<u> </u>			
						<u></u>			<u> </u>					- 6 T				1.						
																							<u> </u>	
																				<u> </u>	<u> </u>			
			· · · · · · · · · · · · · · · · · · ·			· · · · ·	· · · · · · · · · · · · · · · · · · ·			<u> </u>	<u> </u>	·							¦	┼	<u> </u>			
			· · · · · ·						┼──											┢		<u> </u>		
				· · · ·			· · · · · · · · · · · · · · · · · · ·			+			•		· .			<u></u>	- [.]	<u> </u>			,	<u> </u>
		I				L			L	╋	<u> </u>						Aug	ust 3	1/21			₩	᠆᠇ᠧ	A
TUR	N AROUND R	EQUIRED:	ROUTII		SH SPECIFY DATE:		(surcharge may apply)				INQUI ter Ba	·····	BY:			ATE:			15:00			V	11.	-4-1
SEN		<u></u>		SREPOR	DIFFERENT FROM		ovide details			+						IME:					H	TIN		Ce
										REL	INQUI	SHED	BY:			ATE:				RECI	EIVED		_	<u> </u>
	CIAL INSTRU				E RESULTS TO 250		-MAIL TO			FO	R LAI				Ţ	IME:		<u> </u>	~	L		TIN	IE:	
			wastewater@s								er Sea			<u></u>	Samp	le Ter	npera	ture:	Ē	³ C	Cooli	ng Method?		
											res _			I/A	Froze		_Yes		No		1	-	Ice	None

FERNIE ALPINE RESORT UTILITIES CORPORATION ATTN: Patrick Majer 1505 - 17TH AVENUE SW CALGARY AB T2T 0E2 Date Received: 16-SEP-21 Report Date: 04-OCT-21 09:46 (MT) Version: FINAL

Client Phone: 800-258-7669

Certificate of Analysis

Lab Work Order #: L2640200 Project P.O. #: NOT SUBMITTED Job Reference: SEPTEMBER 2021 MONTHLY EMS C of C Numbers: Legal Site Desc:

May

Patryk Wojciak, B.Sc., P.Chem. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2640200-1 WWTP INFLUENT							
Sampled By: Carter Barrett on 15-SEP-21 @ 10:00							
Matrix: Water							
Miscellaneous Parameters							
Biochemical Oxygen Demand	179		75	mg/L		17-SEP-21	R5592656
Total Suspended Solids	211		3.0	mg/L		20-SEP-21	R5590125
pH	7.20		0.10	pH		27-SEP-21	R5603999
L2640200-2 WWTP EFFLUENT							
Sampled By: Carter Barrett on 15-SEP-21 @ 10:00							
Matrix: Water							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		02-OCT-21	R5606938
Biochemical Oxygen Demand	<2.0		2.0	mg/L		17-SEP-21	R5592656
Orthophosphate-Dissolved (as P)	0.0755		0.0050	mg/L		16-SEP-21	R5585755
Coliform Bacteria - Fecal	<1		1	CFU/100mL		16-SEP-21	R5586405
Phosphorus (P)-Total	0.0702		0.0050	mg/L		21-SEP-21	R5591117
Total Suspended Solids	<3.0		3.0	mg/L		20-SEP-21	R5590125
pH	7.76		0.10	рH		27-SEP-21	R5603999
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC							
Nitrate (as N)	30.4	HTD	0.10	mg/L		21-SEP-21	R5591459
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	30.5		0.11	mg/L		21-SEP-21	
Nitrite in Water by IC Nitrite (as N)	0.101	HTD	0.050	mg/L		21-SEP-21	R5591459

Sample Parameter Qualifier Key:

Qualifier	Description		
HTD	Hold time exceeded f	or re-analysis or dilution, but initial testing wa	s conducted within hold time.
est Method	References:		
ALS Test Coo	de Matrix	Test Description	Method Reference**
30D-BC-CL	Water	Biochemical Oxygen Demand (BOD)	APHA 5210 B-5 day IncubO2 electrode
oxygen demai dissolved oxyg	nd (BOD) are determined gen meter. Dissolved BO	by diluting and incubating a sample for a spe	Biochemical Oxygen Demand (BOD)". All forms of biochemical cified time period, and measuring the oxygen depletion using a ample through a glass fibre filter prior to dilution. Carbonaceous ior to incubation.
CC-MF-CL	Water	Fecal Coliform Count-MF	APHA 9222D
Coliform bacte involves an in	eria is enumerated by cul itial 24 hour incubation at	turing and colony counting. A known sample v	mbrane Filter Technique for Members of the Coliform Group". volume is filtered through a 0.45 micron membrane filter. The test ate growth medium. This method is specific for thermotolerant I.
N2N3-CALC-C	CL Water	Nitrate+Nitrite	CALCULATION
NH3-F-CL	Water	Ammonia by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
			odified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society on of trace levels of ammonium in seawater", Roslyn J. Waston et
NO2-IC-N-CL	Water	Nitrite in Water by IC	EPA 300.1 (mod)
norganic anic	ons are analyzed by Ion C	hromatography with conductivity and/or UV d	etection.
103-IC-N-CL	Water	Nitrate in Water by IC	EPA 300.1 (mod)
norganic anic	ons are analyzed by Ion C	hromatography with conductivity and/or UV d	etection.
P-T-COL-CL	Water	Total P in Water by Colour	APHA 4500-P PHOSPHORUS
	is carried out using proce ligestion of the sample.	dures adapted from APHA Method 4500-P "P	hosphorus". Total Phosphorus is determined colourimetrically afte
PH-CL	Water	рН	APHA 4500 H-Electrode
		g a pH electrode. All samples analyzed by this nalysis is recommended for pH where highly	s method for pH will have exceeded the 15 minute recommended accurate results are needed)
04-DO-COL	-CL Water	Diss. Orthophosphate in Water by Colour	APHA 4500-P PHOSPHORUS
		dures adapted from APHA Method 4500-P "P been lab or field filtered through a 0.45 micror	hosphorus". Dissolved Orthophosphate is determined membrane filter.
SS-CL	Water	Total Suspended Solids	APHA 2540 D-Gravimetric
		dures adapted from APHA Method 2540 "Soli pple through a glass fibre filter, and by drying	ids". Solids are determined gravimetrically. Total suspended solids the filter at 104 deg. C.
ALS test met	thods may incorporate mo	odifications from specified reference methods	to improve performance.
The last two le	etters of the above test co	ode(s) indicate the laboratory that performed a	analytical analysis for that test. Refer to the list below:
aboratory D	efinition Code Labo	ratory Location	
CL	ALS	ENVIRONMENTAL - CALGARY, ALBERTA, (CANADA
hain of Curr	tody Numbers:		

Chain of Custody Numbers:

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
---------------	--------	------------------	--------------------

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS Environmental

www.alsenviro.com

ANALYTICAL CHEMISTRY & TESTING SERVICES

Fort St. John BC. Grand Prairie AB Fort McMurray Al Edmonton AB, 9 Calgary AB, Bay Saskatoon SK, 8

5-0243 Fax: 604-253-6700 261-5587 9878 Fax: 780-513-2191 1-1586 878 Fax: 780-437-2311 0-668-9878 Fax: 403-291-0298 '-7645 Fax: 306-668-8383

SEND REPORT TO	D:														_					AGE
	FERNIE ALPINE RESORT	T UTILITIES CORPO	RATION	ATTN:	PATRICK MAJER			LYSI	S RE	QUES	TED:	r1	<u> </u>				- -			
ADDRESS:	1505 - 17TH AVENUE SO	UTH WEST								50-	11									
	CALGARY	PROV: ALBER	ТА	POSTAL CODE:	T2T 0E2				5 Q								,			
CITY: TEL:	403 - 256 - 8473	CAL FAX: 403-2		SAMPLER:	Carter Barrett					8 _{7.}						· .	. .			
PROJECT NAME	Wastewater	August 2021 Monthly	EMS	QUOTE NO:												- 421		्र २		
		ALS CONTACT:	Patryk Wojciak					1	44.		1			· .	- []					
PO NO.:			AIL - ADDRES	pmajer@skirc	r.com		S												1	
REPORT FORMA	1. j			OTHER:			Coliforms		, s	ik,	а́.	2								
1407				COLLECTED	1					d d	z	z	z	25						NOTES (san
WO#	SAMPLE IDENT	TIFICATION			MATRIX		Fecal	TSS	펍	Ortho	NH3-N	N-EON	NO2-N	BOD5	G					comments, due
<u> </u>			YYYY-MM-DD 2021-09-15	10:00	Water			x	X		1			-			Τ			
	WWTP Influent Routine		2021-09-15	10:00	Water	<u></u>						1		X				Τ		
	WWTP Influent BOD WWTP Effluent Routine		2021-09-15	10:00	Water	· · ·		x	X		1	1	·							
	WWTP Effluent Routine		2021-09-15	10:00	Water						1			х						
	WWTP Effluent Nutrients		2021-00-10	10:00	Water	- N-12				X >	×	X	X					·		
	WWTP Effluent Bacteriol	· · · · · · · · · · · · · · · · · · ·	2021-09-15	10:00	Water		X					Γ								
┃ ·· ; <mark> ································</mark>	WWWIF Emuent Bacterion							2 			9		1		4					<u> </u>
	and and the second s	<u>81</u>		1 .	<u> </u>		┝──┦					Ţ								
	a and a second sec	×						5				· .		1 						
<u>ш</u>			<u>, , , , , , , , , , , , , , , , , , , </u>	N	1															
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	The set	,			-											\bot			
LAB																				
R R		•	1						· . ·								. 1	· · · · · · · · · · · · · · · · · · ·		
		<u> </u>														 -		_		
				-	and the second s					-										
		<u> </u>	1																	
					· · · · · · · · · · · · · · · · · · ·												_			
		i de la composición de			6		2.1	<u> </u>												
	. <u>19. a. a.</u>	<u> </u>													L					
			SPECIFY DATI		(surcharge may apply	y)				INQUISH		(:		DATE:	20	21-09-		RECE		
TURN AROUND	REQUIRED:								Car	ter Barre	ett			TIME:	<u> </u>	10	0:00		Ð	
SEND INVOICE	TO: 1 SAM	IE AS REPOR DI	FFERENT FRO	OM REPORT (provide details				REL	INQUIS	IED BY	(:	-	DATE	1			RECE	EIVED	
INVOICE FORM	AT: HAR		DF 🗌 F	AX [°]										TIME			Δ			TIME
SPECIAL INSTR	UCTIONS: PLEASE F	AX A COPY OF THE	RESULTS TO 2	50-423-4652 OF	E-MAIL TO				<u> </u>	R LAB		ONL					5.			ng Mathod?
1		r@skifernie.com							_	ler Seal Yes			San	npie Te	mpera	ature: sN	¥`	υ I		ng Method? epackslo

G:/QUALITY/00_DOCUMENTS/10_AUTHORIZED/FORMS/CoC for ALS Plant EMS.xls

FERNIE ALPINE RESORT UTILITIES CORPORATION ATTN: Patrick Majer 1505 - 17TH AVENUE SW CALGARY AB T2T 0E2 Date Received: 07-OCT-21 Report Date: 01-NOV-21 09:55 (MT) Version: FINAL

Client Phone: 800-258-7669

Certificate of Analysis

Lab Work Order #: L2648585 Project P.O. #: NOT SUBMITTED Job Reference: FARUC - FALL EMS WEEK 1 C of C Numbers: Legal Site Desc:

May

Patryk Wojciak, B.Sc., P.Chem. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

FARUC - FALL EMS WEEK 1

L2648585 CONTD.... PAGE 2 of 5 Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2648585-1 WWTP INFLUENT							
Sampled By: CARTER BARRETT on 06-OCT-21 @ 10:	30						
Matrix: WATER							
Miscellaneous Parameters							
Biochemical Oxygen Demand	263	BODP	75	mg/L		08-OCT-21	R5616467
Total Suspended Solids	262		3.0	mg/L		12-OCT-21	R5616602
рН	7.58		0.10	pН		13-OCT-21	R5617668
L2648585-2 WWTP EFFLUENT							
Sampled By: CARTER BARRETT on 06-OCT-21 @ 10:	30						
Matrix: WATER							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		28-OCT-21	R5633107
Biochemical Oxygen Demand	<2.0		2.0	mg/L		08-OCT-21	R5616467
Chemical Oxygen Demand	<10		10	mg/L		08-OCT-21	R5614846
Orthophosphate-Dissolved (as P)	0.0681		0.0050	mg/L		07-OCT-21	R5614412
Coliform Bacteria - Fecal	<1		1	CFU/100mL		07-OCT-21	R5614689
Phosphorus (P)-Total	0.210	DLHC	0.0050	mg/L		15-OCT-21	R5620762
Total Suspended Solids	3.1		3.0	mg/L		12-OCT-21	R5616602
pH	7.94		0.10	рН		13-0CT-21	R5617668
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC Nitrate (as N)	22.2		0.020	mg/L		08-OCT-21	R5619616
Nitrate+Nitrite Nitrate and Nitrite (as N)	22.3		0.022	mg/L		15-OCT-21	
Nitrite in Water by IC Nitrite (as N)	0.079		0.010	mg/L		08-OCT-21	R5619616
L2648585-3 ELK RIVER UPSTREAM							
Sampled By: CARTER BARRETT on 06-OCT-21 @ 10:	15						
Matrix: WATER							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		28-OCT-21	R5633107
Orthophosphate-Dissolved (as P)	<0.0050		0.0050	mg/L		07-OCT-21	R5614412
Coliform Bacteria - Fecal	<1		1	CFU/100mL		07-OCT-21	R5614689
Phosphorus (P)-Total	<0.0050		0.0050	mg/L		15-OCT-21	R5620762
Total Suspended Solids	<3.0		3.0	mg/L		12-OCT-21	R5616602
pH	8.28		0.10	рН		13-OCT-21	R5617668
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC Nitrate (as N)	2.03		0.020	mg/L		08-OCT-21	R5619616
Nitrate+Nitrite	2.03		0.020	iiig/∟		00-001-21	1,2019010
Nitrate and Nitrite (as N)	2.03		0.022	mg/L		15-OCT-21	
Nitrite in Water by IC				Ŭ			
Nitrite (as N)	<0.010		0.010	mg/L		08-OCT-21	R5619616
L2648585-4 ELK RIVER @ OUTFALL							
Sampled By: CARTER BARRETT on 06-OCT-21 @ 10:	00						
Matrix: WATER							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		28-OCT-21	R5633107
Orthophosphate-Dissolved (as P)	0.0429		0.0050	mg/L		07-OCT-21	R5614412
Coliform Bacteria - Fecal	2		1	CFU/100mL		07-OCT-21	R5614689
Phosphorus (P)-Total	0.046	DLM	0.020	mg/L		15-OCT-21	R5620762
Total Suspended Solids	<3.0		3.0	mg/L		12-OCT-21	R5616602

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2648585-4 ELK RIVER @ OUTFALL							
Sampled By: CARTER BARRETT on 06-OCT-21 @ 10	0.00						
Matrix: WATER							
pH	8.10		0.10	pН		13-OCT-21	R5617668
NO2, NO3 and Sum of NO2/NO3	0.10		0.10			10 001 21	13017000
Nitrate in Water by IC							
Nitrate (as N)	3.31		0.020	mg/L		08-OCT-21	R5619616
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	3.31		0.022	mg/L		15-OCT-21	
Nitrite in Water by IC Nitrite (as N)	<0.010		0.010	mg/L		08-OCT-21	R5619616
_2648585-5 ELK RIVER DOWNSTREAM	<0.010		0.010	iiig/L		00-001-21	13019010
Sampled By: CARTER BARRETT on 06-OCT-21 @ 09 Matrix: WATER	9.50						
Matrix. WATER Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		28-OCT-21	R5633107
Orthophosphate-Dissolved (as P)	<0.0050		0.0050	mg/L		07-OCT-21	R5614412
Coliform Bacteria - Fecal	<0.0050		0.0050	CFU/100mL		07-0CT-21 07-0CT-21	R5614689
Phosphorus (P)-Total	<0.0050		0.0050	mg/L		15-OCT-21	R5620762
Total Suspended Solids	<3.0		3.0	mg/L		12-OCT-21	R5616602
pH	8.24		0.10	pH		12-0CT-21 13-0CT-21	R5617668
NO2, NO3 and Sum of NO2/NO3	0.24		0.10	pri		13-001-21	R3017000
Nitrate in Water by IC							
Nitrate (as N)	2.02		0.020	mg/L		08-OCT-21	R5619616
Nitrate+Nitrite	_			5			
Nitrate and Nitrite (as N)	2.02		0.022	mg/L		15-OCT-21	
Nitrite in Water by IC							
Nitrite (as N)	<0.010		0.010	mg/L		08-OCT-21	R5619616

Reference Information

Sample Parameter Qualifier Key:

Qualifier	Description
BODP	BOD dilution results differed by more than 30% RPD. Precision of reported BOD result may be less than usual.
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).

Test Method References: ALS Test Code Matrix Method Reference** **Test Description** BOD-BC-CL Biochemical Oxygen Demand (BOD) APHA 5210 B-5 day Incub.-O2 electrode Water This analysis is carried out using procedures adapted from APHA Method 5210B - "Biochemical Oxygen Demand (BOD)". All forms of biochemical oxygen demand (BOD) are determined by diluting and incubating a sample for a specified time period, and measuring the oxygen depletion using a dissolved oxygen meter. Dissolved BOD (SOLUBLE) is determined by filtering the sample through a glass fibre filter prior to dilution. Carbonaceous BOD (CBOD) is determined by adding a nitrification inhibitor to the diluted sample prior to incubation. COD-T-COL-CL Chemical Oxygen Demand (COD) APHA 5220 D Colorimetry Water Samples are analyzed using the closed reflux colourimetric method FCC-MF-CL Water Fecal Coliform Count-MF APHA 9222D This analysis is carried out using procedures adapted from APHA Method 9222 "Membrane Filter Technique for Members of the Coliform Group". Coliform bacteria is enumerated by culturing and colony counting. A known sample volume is filtered through a 0.45 micron membrane filter. The test involves an initial 24 hour incubation at 44.5 degrees C of the filter with the appropriate growth medium. This method is specific for thermotolerant bacteria (Fecal) and is used for non-turbid water with a low background bacteria level. N2N3-CALC-CL Nitrate+Nitrite CALCULATION Water NH3-F-CL Water Ammonia by Fluorescence J. ENVIRON. MONIT., 2005, 7, 37-42, RSC This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et NO2-IC-N-CL Water Nitrite in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. NO3-IC-N-CL Water Nitrate in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. P-T-COL-CL Water Total P in Water by Colour **APHA 4500-P PHOSPHORUS** This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is determined colourimetrically after persulphate digestion of the sample. PH-CL Water APHA 4500 H-Electrode pН pH is determined in the laboratory using a pH electrode. All samples analyzed by this method for pH will have exceeded the 15 minute recommended hold time from time of sampling (field analysis is recommended for pH where highly accurate results are needed) PO4-DO-COL-CL Diss. Orthophosphate in Water by Colour **APHA 4500-P PHOSPHORUS** Water This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. TSS-CL Water **Total Suspended Solids** APHA 2540 D-Gravimetric This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total suspended solids (TSS) are determined by filtering a sample through a glass fibre filter, and by drying the filter at 104 deg. C. ** ALS test methods may incorporate modifications from specified reference methods to improve performance. The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
CL	ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA
Chain of Custody Numbers:	

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
---------------	--------	-------------------------	--------------------

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

lceNone	icepacks	No	Yes	Frozen? Yes	Froze	NIA	No	Yes	Ę								
Śpć	Cooling Method?	1 °c	Sample Temperature:	ole Temp	_	CINET	Intact?	Cooler Seal Infact?	Coole						wastewater@skifernie.com		
		T			ŀ							-MAIL TO	1423-4652 OR E	RESULTS TO 250	PLEASE FAX A COPY OF THE RESULTS TO 250-423-4652 OR E-MAIL TO		SPECIAL INSTRUCTIONS:
TIME	_	7		TIME:	,								×	F D FAX	HARDCOPY PDF	- HAI	INVOICE FORMAT:
DATE:	RECEIVED BY:	20		_	_	.?	HED BY:	RELINQUISH	RELI			ovide details	A REPORT (pro	FERENT FROM	SAME AS REPOR DIFFERENT FROM REPORT (provide details	SAI	SEND INVOICE TO:
TIME:			lion			:	ett	Carter Barrett	Cart				æ			-	IORN AROOND REQUIRED:
DATE DUC		2021-10-6 R	2021	DATE.			HED BY:	RELINQUISH	RE			(surcharge may apply)		O RUSH SPECIFY DATE:	ROUTINE ORUSH		
10															1		
						-											
					1												
					1	-				×		water	1. 10	0-01-1202	C Institution		
			-		×	×	×	>				vvater	9:00	2021-10-0		Elle Bisse Downstream Posterial	
	0.				-	-	+	<		;	-	10/	221	2021 40 5	Nutriante 12	River Downetreem	
700	U.					-	_		×	×	_	Water	4:50	2021-10-6	Routine (17	Elk River Downstream Routine	
			-				_			×		Water	10:00	2021-10-6	cteriological (L	Elk River @ Outfall Bacteriological	
			-		×	×	×	×				Water	10:00	2021-10-6	trients (Elk River @ Outfall Nutrients	
J°(11.2		_				_		×	×		Water	10:00	2021-10-6	utine //	Elk River @ Outfall Routine	USE
										×		Water	10:00/5	2021-10-6	cteriological	Elk River Upstream Bacteriological	
					×	×	×	×				Water	10:15	2021-10-6	trients 8	Elk River Upstream Nutrients	
200	Y, K		_						×	×		Water	10:15	2021-10-6		Elk River Upstream Routine	EIK
N			-							×		Water	10:30	2021-10-6	iological 6	WWTP Effluent Bacteriological	WW
			_		×	×	×	×				Water	15.30	2021-10-6	nts S	WWTP Effluent Nutrients	WW
				×		_						Water	10:50	2021-10-6	4	WWTP Effluent BOD	W
CU Fi	15.		×						×	×	_	Water	10:30	2021-10-6	e Vo	WWTP Effluent Routine	WW
	-			×								Water	10:50	2021-10-6	2	WWTP Influent BOD	WW
, 2°C	1								×	×		Water	10:30	2021-10-6	0	WWTP Influent Routine	WW
comments, due dates, etc.)	com		COI	BOI	NO	NH:	Tota NH3	Ortł	рН	TSS	Ecc		TIME	YYYY-MM-DD			
NOTES (sample specific	NO		D	-		-	-	no P		-		MATRIX	DATE / TIME COLLECTED	DATE / TIME	SAMPLE IDENTIFICATION	SAMPLE IDE	WO#
										olifor	olifer		OTHER:	- I PDF	G FAX C EXCEL		
		_				- 11				IIIS	ma	<u>:r.com</u>	<u>gmajer@skirc</u>	EMAIL - ADDRESSmajer@skircr.com	HARDCOPY I	S	REPORT FORMAT:
		_												ALS CONTACT: Patryk Woyciak	ALS CONTACT	-	PO NO.:
							3.5						QUOTE NO:		FARUC - Fall EMS week 1		PROJECT NAME AND NO .:
		_					6	_				SAMPLER: Carter Barrett	SAMPLER:	244 - 3774	FAX: 403 - 244 - 3774	403 - 256 - 8473	TEL: 403
					_			_		-		T2T 0E2	POSTAL CODE: T2T 0E2	RTA	PROV: ALBERTA	CALGARY	CITY: CA
		_	-		-										SOUTH WEST	1505 - 17TH AVENUE SOUTH WEST	ADDRESS: 150
						ö	ESTEI	REQU	SIS F	ANALYSIS REQUESTED:	Þ	ATTN: PATRICK MAJER	ATTN:	ORATION	FERNIE ALPINE RESORT UTILITIES CORPORATION	RNIE ALPINE RES	COMPANY: FEI

ANALYTICAL CHEMISTRY & TESTING SERVICES ALS Environmental

www.alsenviro.com

SEND REPORT TO:

Vancouver BC, 1988 Triumph Street, VSL 1K5, Tel: 604-253-4188 Toli Free: 1-800-665-0243 Fax: 604-253-6700 Fort St. John BC, Box 256, 9831 - 98A Avenue, V1J 6W7, Tel: 250-261-5517 Fax: 250-261-5587 Grand Prairie AB, 9595 - 111 Street, T8V 5W1, Tel: 780-539-5196 Toll Free: 1-2 Calgary AB, Bay 7, 1313 - 44th Avenue NE, T2E 6L5, Tel: 403-291-9897 Toll Fri Saskatoon SK, 819 - 58th Street East, S7K 6X5, Tel: 306-668-8370 Toll Free: 1-Fort McMurray AB, Bay 1, 245 Macdonald Cr, T9H 4B5, Tel: 780-791-1524 Fax Edmonton AB, 9936 - 67th Avenue, T6E 0P5, Tel: 780-413-5227 Toll Free: 1-80

CHAIN OF CUSTODY FORM

FERNIE ALPINE RESORT UTILITIES CORPORATION ATTN: Patrick Majer 1505 - 17TH AVENUE SW CALGARY AB T2T 0E2 Date Received: 14-OCT-21 Report Date: 01-NOV-21 13:15 (MT) Version: FINAL

Client Phone: 800-258-7669

Certificate of Analysis

Lab Work Order #: L2650961 Project P.O. #: NOT SUBMITTED Job Reference: FARUC - FALL EMS WEEK 2 C of C Numbers: Legal Site Desc:

May

Patryk Wojciak, B.Sc., P.Chem. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

FARUC - FALL EMS WEEK 2

L2650961 CONTD.... PAGE 2 of 5 Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2650961-1 WWTP INFLUENT							
Sampled By: CB on 13-OCT-21 @ 09:30							
Matrix: WATER							
Miscellaneous Parameters							
Biochemical Oxygen Demand	58		20	mg/L		15-OCT-21	R5625007
Total Suspended Solids	68.7		3.0	mg/L		19-OCT-21	R5625419
рН	7.83		0.10	pН		19-OCT-21	R5626939
L2650961-2 WWTP EFFLUENT							
Sampled By: CB on 13-OCT-21 @ 09:30							
Matrix: WATER							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		30-OCT-21	R5633394
Biochemical Oxygen Demand	<2.0		2.0	mg/L		15-OCT-21	R5625007
Chemical Oxygen Demand	<10		10	mg/L		15-OCT-21	R5620298
Orthophosphate-Dissolved (as P)	0.0878		0.0050	mg/L		14-OCT-21	R5619157
Coliform Bacteria - Fecal	<1		1	CFU/100mL		14-OCT-21	R5619919
Nitrate (as N)	23.4		0.020	mg/L		15-OCT-21	R5625315
Nitrate and Nitrite (as N)	23.4		0.022	mg/L		20-OCT-21	
Nitrite (as N)	0.019		0.010	mg/L		15-OCT-21	R5625315
Phosphorus (P)-Total	0.0952		0.0050	mg/L		21-OCT-21	R5625375
Total Suspended Solids	<3.0		3.0	mg/L		19-OCT-21	R5625419
рН	7.95		0.10	pН		19-OCT-21	R5626939
L2650961-3 ELK RIVER UPSTREAM							
Sampled By: CB on 13-OCT-21 @ 09:45							
Matrix: WATER							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		30-OCT-21	R5633394
Orthophosphate-Dissolved (as P)	<0.0050		0.0050	mg/L		14-OCT-21	R5619157
Coliform Bacteria - Fecal	<1		1	CFU/100mL		14-OCT-21	R5619919
Nitrate (as N)	2.10		0.020	mg/L		15-OCT-21	R5625315
Nitrate and Nitrite (as N)	2.10		0.022	mg/L		20-OCT-21	
Nitrite (as N)	<0.010		0.010	mg/L		15-OCT-21	R5625315
Phosphorus (P)-Total	<0.0050		0.0050	mg/L		21-OCT-21	R5625375
Total Suspended Solids	<3.0		3.0	mg/L		19-OCT-21	R5625419
рН	8.32		0.10	рН		19-OCT-21	R5626939
L2650961-4 ELK RIVER @ OUTFALL							
Sampled By: CB on 13-OCT-21 @ 10:00							
Matrix: WATER							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		30-OCT-21	R5633394
Orthophosphate-Dissolved (as P)	0.0571		0.0050	mg/L		14-OCT-21	R5619157
Coliform Bacteria - Fecal	18		1	CFU/100mL		14-OCT-21	R5619919
Nitrate (as N)	9.03		0.020	mg/L		15-OCT-21	R5625315
Nitrate and Nitrite (as N)	9.03		0.022	mg/L		20-OCT-21	
Nitrite (as N)	<0.010		0.010	mg/L		15-OCT-21	R5625315
Phosphorus (P)-Total	0.0486		0.0050	mg/L		21-OCT-21	R5625375
Total Suspended Solids	<3.0		3.0	mg/L		19-OCT-21	R5625419
рН	6.97		0.10	рН		19-OCT-21	R5626939
L2650961-5 ELK RIVER DOWNSTREAM							
Sampled By: CB on 13-OCT-21 @ 10:15							
Matrix: WATER							

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2650961-5 ELK RIVER DOWNSTREAM							
Sampled By: CB on 13-OCT-21 @ 10:15							
Matrix: WATER							
Miscellaneous Parameters Ammonia, Total (as N)	<0.050		0.050	mg/L		30-OCT-21	R5633394
Orthophosphate-Dissolved (as P)	<0.050		0.050 0.0050	mg/L		14-OCT-21	R5619157
Coliform Bacteria - Fecal	<1		1	CFU/100mL		14-0CT-21	R5619919
Nitrate (as N)	2.08		0.020	mg/L		15-OCT-21	R5625315
Nitrate and Nitrite (as N)	2.08		0.022	mg/L		20-OCT-21	
Nitrite (as N)	<0.010		0.010	mg/L		15-OCT-21	R5625315
Phosphorus (P)-Total	<0.0050		0.0050	mg/L		21-OCT-21	R5625375
Total Suspended Solids	<3.0		3.0	mg/L		19-OCT-21	R5625419
рН	8.30		0.10	pН		19-OCT-21	R5626939

L2650961 CONTD.... PAGE 4 of 5 Version: FINAL

ALS Test Code	Matrix	Test Description	Method Reference**
BOD-BC-CL	Water	Biochemical Oxygen Demand (BOD)	APHA 5210 B-5 day IncubO2 electrode
oxygen demand (BOD) are dissolved oxygen meter. Di	determined issolved BOI	by diluting and incubating a sample for a specifie	chemical Oxygen Demand (BOD)". All forms of biochemical ed time period, and measuring the oxygen depletion using a ole through a glass fibre filter prior to dilution. Carbonaceous to incubation.
COD-T-COL-CL	Water	Chemical Oxygen Demand (COD)	APHA 5220 D Colorimetry
Samples are analyzed usin	g the closed	reflux colourimetric method	
FCC-MF-CL	Water	Fecal Coliform Count-MF	APHA 9222D
Coliform bacteria is enume involves an initial 24 hour in	rated by cult ncubation at	uring and colony counting. A known sample volu	ane Filter Technique for Members of the Coliform Group". me is filtered through a 0.45 micron membrane filter. The test growth medium. This method is specific for thermotolerant
N2N3-CALC-CL	Water	Nitrate+Nitrite	CALCULATION
NH3-F-CL	Water	Ammonia by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
			ied from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of trace levels of ammonium in seawater", Roslyn J. Waston et
NO2-IC-N-CL	Water	Nitrite in Water by IC	EPA 300.1 (mod)
Inorganic anions are analyz	zed by Ion Cl	nromatography with conductivity and/or UV detection	ction.
NO3-IC-N-CL	Water	Nitrate in Water by IC	EPA 300.1 (mod)
Inorganic anions are analyz	zed by Ion Cl	nromatography with conductivity and/or UV detection	ction.
P-T-COL-CL	Water	Total P in Water by Colour	APHA 4500-P PHOSPHORUS
This analysis is carried out persulphate digestion of the		dures adapted from APHA Method 4500-P "Phos	sphorus". Total Phosphorus is determined colourimetrically after
PH-CL	Water	рН	APHA 4500 H-Electrode
		a pH electrode. All samples analyzed by this manalysis is recommended for pH where highly acc	ethod for pH will have exceeded the 15 minute recommended urate results are needed)
PO4-DO-COL-CL	Water	Diss. Orthophosphate in Water by Colour	APHA 4500-P PHOSPHORUS
		dures adapted from APHA Method 4500-P "Phos een lab or field filtered through a 0.45 micron me	sphorus". Dissolved Orthophosphate is determined embrane filter.
TSS-CL	Water	Total Suspended Solids	APHA 2540 D-Gravimetric
This analysis is carried out (TSS) are determined by fil	using procee tering a sam	dures adapted from APHA Method 2540 "Solids" ple through a glass fibre filter, and by drying the	. Solids are determined gravimetrically. Total suspended solids filter at 104 deg. C.
** ALS test methods may inc	corporate mo	difications from specified reference methods to i	mprove performance.
The last two letters of the a	bove test co	de(s) indicate the laboratory that performed anal	lytical analysis for that test. Refer to the list below:
Laboratory Definition Coc	de Laboi	atory Location	
CL	ALS E	NVIRONMENTAL - CALGARY, ALBERTA, CAN	NADA

Chain of Custody Numbers:

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
---------------	--------	-------------------------	--------------------

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS Environmental

www.alsenviro.com

ANALYTICAL CHEMISTRY & TESTING SERVICES

-800-665-0243 Fax: 604-253-6700 Fax: 250-261-5587 -800-668-9878 Fax: 780-513-2191 x: 780-791-1586 '00-668-9878 Fax: 780-437-2311 ree: 1-800-668-9878 Fax: 403-291-0298 I-800-667-7645 Fax: 306-668-8383

961

۰,

84-0

SEND REPORT	TO:			 		CUS	то	DY	FO	RM									P	AGE	OF
COMPANY:	FERNIE ALPINE RESORT	UTILITIES CORPO	RATION	ATTN:	PATRICK MAJER		ALYS														
ADDRESS:	1505 - 17TH AVENUE SOL											. I				10		-			
CITY:	CALGARY	PROV: ALBER	ТА	POSTAL CODE:										·				4			
reL:	403 - 256 - 8473	FAX: 403 - 2		SAMPLER:	Carter Barrett	·															
PROJECT NAM	FARUC - Fail	EMS week 2		QUOTE NO:												1					
PO NO.:		ALS CONTACT:	Patryk Woyciak	.																	
-0 110			AIL - ADDRES	pmajer@skirc	r.com	S									1	: 1					
REPORT FOR		_	PDF	OTHER:	.*	Coliforms		P					-		14 15				L		
WO#			DATE / TIME	COLLECTED				1	е Р	alP	NH3-N	NO3-N	NO2-N	D2				46		NOTES (sam	
اد با المرد 1944 - مالیک 1944 - مالیک	SAMPLE IDENTI	FICATION	YYYY-MM-DD	TIME	MATRIX	Fecal	TSS	ਸ਼ੁ	Ortho	Total	Ч Z	2 Z	g	BOD5				1	\bot	comments, due	oates, etc.)
1	WWTP Influent Routine	1	2021-10-13	9:30	Water	-	X	X	<u> </u>											12	
	WWTP Influent BOD	2	2021-10-13	9:30	Water									×						1	
	- WWTP Effluent Routine	3	2021-10-13	9.30	Water		X	X						-	X					14mC	
1-5	WWTP Effluent BOD	4	2021-10-13	9:30	Water									X						<u> </u>	
	WWTP Effluent Nutrients		2021-10-13	9:30	Water				X	X	х	х	X					<u> </u>			
	WWTP Effluent Bacteriolog		2021-10-13	9:30	Water	X														1	
	Elk River Upstream Routin		2021-10-13	9:45	Water		X	X						z .					<u> </u>	3-7-	
> 3-	Elk River Upstream Nutrier		2021-10-13	9.45	Water				X	X	X	х	х								
₹ (Elk River Upstream Bacter		2021-10-13	9.45	Water	X		~					т. 1]		1	
ы Ш	Elk River @ Outfall Routin		2021-10-13	10:00	Water		X	X								1.				8-6°	
	Elk River @ Outfall Nutrier		2021-10-13	10:00	Water				X	X	X	Х	X		~.	<u> </u>					
≤ ' ' -	Elk River @ Outfall Bacter		2021-10-13	10:00	Water	X	Τ					•									
FOR LAB USE ONLY	 Elk River Downstream Rout 		2021-10-13	10:15	Water		X	X									1.1			3.60	<u></u>
3	Elk River Downstream Nut		2021-10-13	10:15	Water				X	X	X	х	X								
	Elk River Downstream Bac		2021-10-13	10:15	Water	X							4				È.			<u> </u>	
							1		T								-				
						-					ļ		. ,]							
				-71			1	ŀ		1											
	e at		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			-1-	1.		1		1	1		1					. 9 .		
	26.3 1	. <u> </u>	<u> </u>	1	1		1		1												
				<u></u>	(surcharge may apply)			REI	INQU	JISHE	D BY:		D	ATE:	20	21-1	0-13 _F	RECE	NE⊅	BY: DATE:	10/14
TURN AROUI								Ca	rter B	arrett				IME:		1	0:30		K	TIME:	
SEND INVOID		AS REPOR	FERENT FRC	M REPORT (p	orovide details			REI	LINQU	JISHEI	D BY:		C	ATE:			F	RECE	IVED	BY: DATE:	`````
INVOICE FOR														IME:						TIME:	
SPECIAL INS	TRUCTIONS: PLEASE FAX	X A COPY OF THE			E-MAIL TO			FC	RLA		SE O	NLY	1				F.				
		Øskifernie.com						Cod	oler Se	eal Inta	act?		Samp	le Te	mperati		\underline{O}_{α}			ng Method?	Nore
								<u> </u>	Yes	No	، 	N/A	Froze	n?	Yes	<u> </u>		l	100	epackslce	ivone

.

FERNIE ALPINE RESORT UTILITIES CORPORATION ATTN: Patrick Majer 1505 - 17TH AVENUE SW CALGARY AB T2T 0E2 Date Received: 21-OCT-21 Report Date: 15-NOV-21 11:12 (MT) Version: FINAL

Client Phone: 800-258-7669

Certificate of Analysis

Lab Work Order #: L2653987 Project P.O. #: NOT SUBMITTED Job Reference: FARUC - FALL EMS WEEK 3 C of C Numbers: Legal Site Desc:

May

Patryk Wojciak, B.Sc., P.Chem. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

FARUC - FALL EMS WEEK 3

L2653987 CONTD.... PAGE 2 of 5 Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2653987-1 WWTP INFLUENT							
Sampled By: Carter Barrett on 20-OCT-21 @ 09:45							
Matrix: Water							
Miscellaneous Parameters							
Biochemical Oxygen Demand	54		20	mg/L		22-OCT-21	R5629318
Total Suspended Solids	130		3.0	mg/L		24-OCT-21	R5627906
рН	8.02		0.10	pН		26-OCT-21	R5629798
_2653987-2 WWTP EFFLUENT							
Sampled By: Carter Barrett on 20-OCT-21 @ 09:45							
Matrix: Water							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		09-NOV-21	R5640223
Biochemical Oxygen Demand	<2.0		2.0	mg/L		22-OCT-21	R5629318
Chemical Oxygen Demand	<10		10	mg/L		22-OCT-21	R5627110
Orthophosphate-Dissolved (as P)	0.223	DLHC	0.050	mg/L		21-OCT-21	R5626445
Coliform Bacteria - Fecal	<1		1	CFU/100mL		21-OCT-21	R5626886
Phosphorus (P)-Total	0.267	DLHC	0.025	mg/L		29-OCT-21	R5632826
Total Suspended Solids	<3.0		3.0	mg/L		24-OCT-21	R5627906
рН	8.09		0.10	рН		26-OCT-21	R5629798
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC Nitrate (as N)	24.2		0.020	mg/L		22-OCT-21	R5633792
Nitrate+Nitrite Nitrate and Nitrite (as N)	24.2		0.022	mg/L		01-NOV-21	
Nitrite in Water by IC Nitrite (as N)	0.017		0.010	mg/L		22-OCT-21	R5633792
L2653987-3 ELK RIVER UPSTREAM							
Sampled By: Carter Barrett on 20-OCT-21 @ 10:15							
Matrix: Water							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		09-NOV-21	R5640223
Orthophosphate-Dissolved (as P)	<0.0050		0.0050	mg/L		21-OCT-21	R5626445
Coliform Bacteria - Fecal	1		1	CFU/100mL		21-OCT-21	R5626886
Phosphorus (P)-Total	<0.0050		0.0050	mg/L		29-OCT-21	R5632826
Total Suspended Solids	<3.0		3.0	mg/L		24-OCT-21	R5627906
рН	8.40		0.10	рН		26-OCT-21	R5629798
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC	0.00		0.000			22 007 04	DECOUTOS
Nitrate (as N)	2.09		0.020	mg/L		22-OCT-21	R5633792
Nitrate+Nitrite Nitrate and Nitrite (as N)	2.09		0.022	mg/L		01-NOV-21	
Nitrite in Water by IC	2.00		0.022	iiig/ E			
Nitrite (as N)	<0.010		0.010	mg/L		22-OCT-21	R5633792
_2653987-4 ELK RIVER OUTFALL							
Sampled By: Carter Barrett on 20-OCT-21 @ 10:20							
Matrix: Water							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		09-NOV-21	R5640223
Orthophosphate-Dissolved (as P)	0.0550	RRV	0.0050	mg/L		21-OCT-21	R5626445
Coliform Bacteria - Fecal	14		1	CFU/100mL		21-OCT-21	R5626886
Phosphorus (P)-Total	0.0500	RRV	0.0050	mg/L		29-OCT-21	R5632826
Total Suspended Solids	3.5		3.0	mg/L		24-OCT-21	R5627906

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2653987-4 ELK RIVER OUTFALL							
Sampled By: Carter Barrett on 20-OCT-21 @ 10:20							
Matrix: Water							
pH	8.32		0.10	pН		26-OCT-21	R5629798
NO2, NO3 and Sum of NO2/NO3	0.01		0110	F			1.00201.00
Nitrate in Water by IC							
Nitrate (as N)	7.79		0.020	mg/L		22-OCT-21	R5633792
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	7.79		0.022	mg/L		01-NOV-21	
Nitrite in Water by IC Nitrite (as N)	<0.010		0.010	mg/L		22-OCT-21	R5633792
_2653987-5 ELK RIVER DOWNSTREAM	<0.010		0.010			22 001 21	1100007.02
Sampled By: Carter Barrett on 20-OCT-21 @ 10:30							
Matrix: Water							
Matrix: Water Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		09-NOV-21	R5640223
Orthophosphate-Dissolved (as P)	<0.0050		0.0050	mg/L		21-OCT-21	R5626445
Coliform Bacteria - Fecal	<1		1	CFU/100mL		21-OCT-21	R5626886
Phosphorus (P)-Total	<0.0050		0.0050	mg/L		29-OCT-21	R5632826
Total Suspended Solids	<3.0		3.0	mg/L		24-OCT-21	R5627906
pH	8.41		0.10	pH		26-OCT-21	R5629798
NO2, NO3 and Sum of NO2/NO3	0.41		0.10			20 001 21	113023730
Nitrate in Water by IC							
Nitrate (as N)	2.09		0.020	mg/L		22-OCT-21	R5633792
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	2.09		0.022	mg/L		01-NOV-21	
Nitrite in Water by IC Nitrite (as N)	<0.010		0.010	mg/L		22-OCT-21	R5633792
(ac +)			0.010				

Sample Parameter Qualifier Key:

Qualifier	Description
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RRV	Reported Result Verified By Repeat Analysis

Test Method References:

ALS Test Code Matrix Method Reference** **Test Description** BOD-BC-CL Biochemical Oxygen Demand (BOD) APHA 5210 B-5 day Incub.-O2 electrode Water This analysis is carried out using procedures adapted from APHA Method 5210B - "Biochemical Oxygen Demand (BOD)". All forms of biochemical oxygen demand (BOD) are determined by diluting and incubating a sample for a specified time period, and measuring the oxygen depletion using a dissolved oxygen meter. Dissolved BOD (SOLUBLE) is determined by filtering the sample through a glass fibre filter prior to dilution. Carbonaceous BOD (CBOD) is determined by adding a nitrification inhibitor to the diluted sample prior to incubation. COD-T-COL-CL Chemical Oxygen Demand (COD) APHA 5220 D Colorimetry Water Samples are analyzed using the closed reflux colourimetric method FCC-MF-CL Water Fecal Coliform Count-MF APHA 9222D This analysis is carried out using procedures adapted from APHA Method 9222 "Membrane Filter Technique for Members of the Coliform Group". Coliform bacteria is enumerated by culturing and colony counting. A known sample volume is filtered through a 0.45 micron membrane filter. The test involves an initial 24 hour incubation at 44.5 degrees C of the filter with the appropriate growth medium. This method is specific for thermotolerant bacteria (Fecal) and is used for non-turbid water with a low background bacteria level. N2N3-CALC-CL Nitrate+Nitrite CALCULATION Water NH3-F-CL Water Ammonia by Fluorescence J. ENVIRON. MONIT., 2005, 7, 37-42, RSC This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et NO2-IC-N-CL Water Nitrite in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. NO3-IC-N-CL Water Nitrate in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. P-T-COL-CL Water Total P in Water by Colour **APHA 4500-P PHOSPHORUS** This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is determined colourimetrically after persulphate digestion of the sample. PH-CL Water APHA 4500 H-Electrode pН pH is determined in the laboratory using a pH electrode. All samples analyzed by this method for pH will have exceeded the 15 minute recommended hold time from time of sampling (field analysis is recommended for pH where highly accurate results are needed) PO4-DO-COL-CL **APHA 4500-P PHOSPHORUS** Water Diss. Orthophosphate in Water by Colour This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. TSS-CL Water **Total Suspended Solids** APHA 2540 D-Gravimetric This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total suspended solids (TSS) are determined by filtering a sample through a glass fibre filter, and by drying the filter at 104 deg. C. ** ALS test methods may incorporate modifications from specified reference methods to improve performance. The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below: Laboratory Definition Code Laboratory Location

CL

ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA

Chain of Custody Numbers:

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
---------------	--------	-------------------------	--------------------

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS Environmental

www.alsenviro.com

ANALYTICAL CHEMISTRY & TESTING SERVICES

Vancouver BC, 1988 Triumph Sf Fort St. John BC, Box 256, 983 Grand Prairie AB, 9595 - 111 S Fort McMurray AB, Bay 1, 245 Edmonton AB, 9936 - 67th Ave Calgary AB, Bay 7, 1313 - 44th Saskatoon SK, 819 - 58th Strev.

437-2311 ax: 403-291-0298 ,06-668-8383

`ን-513-2191

					. ,	CHAIN OF C	CUS	īυ	יייט	1° –	_									F	AGE	OF
END REPORT			UTILITIES CORPOR	RATION		PATRICK MAJER	T				EST	ED:			· .							
OMPANY		AVENUE SOL			<u> </u>			<u> </u>	3	Ī				ľ								
DDRESS:	CALGARY		PROV: ALBERT		POSTAL CODE:	T2T 0E2			н н		Ц	;	×					ľ	* •		-	
XITY:	403 - 256 -	0.470				Carter Barrett																
EL:			FAX: 403 - 24		SAMPLER:	Q33058			54		E						142					
ROJECT NAM	E AND NO.:	FARUC - Fail	ALS CONTACT:			<u>((3)))</u>			A. 1								с н. С					
PO NO.:			ALS CONTACT:			or com			s					-								
REPORTFOR	MAT:	⊡ HAR	DCOPY DEM	AIL - ADDRES	<u>9</u>		orms						-									
· · ·		🗌 FAX		PDF	OTHER:	*	Coliform		, 4 ,	٩.		_	-		t f					⊦		
WO#	la tes a	SAMPLE IDENTI	FICATION	DATE / TIME	COLLECTED	MATRIX	Fecal	TSS		Ortho	Total F	NH3-N	NO3-N	NO2-N	BOD5	COD						mple specific ue dates, etc.)
				YYYY-MM-DD	TIME		<u>.</u> ш			0	Ĕ	z.	z	z	-						8.4°	<u>c</u>
	/WWTP Infl	uent Routine		2021-10-20	9:45	Water		X	Х						x					-+	07	1
V	WWTP Inf	uent BOD	4	2021-10-20	9:45	Water										X		-+	-+		14.00	
 3 1 	WWTP Eff	luent Routine	3	2021-10-20	9:45	Water		X	X	** :			<u>.</u>		X	-	-		-+	-+	17. 0	
2		luent BOD	4	2021-10-20	9:45	Water		 							<u>^</u>					-+		
		luent Nutrients	3	2021-10-20	9:45	Water				<u> </u>	X .	X	Χ.	<u> </u>		· ·	*		<u>·</u>	<u> </u>		
		luent Bacteriolo	· · · · · · · · · · · · · · · · · · ·	2021-10-20	9:45	Water	X		~												5.1%	c
5	Elk River L	Ipstream Routin	e	2021-10-20	10:15	Water	-	X	X	. 		:			<u>··</u>		·		-+		<u> </u>	
5	<u>\</u>	Ipstream Nutrie	<u> </u>	2021-10-20	10:15	Water	_	1		X	X	X	X	X			-		,			
	Elk River l	Jpstream Bacter	iological 4	2021-10-20	10:15	Water	X	245			μ,						i, i		-		5.40	
N N	Elk River (Dutfall Routin	e /0	2021-10-20	10:20	Water		X	X	<u> </u>					-	_			-+	-+	<u>0.7°</u>	
	Elk River (D Outfall Nutrier	nts /]	2021-10-20	10:20	Water			<u> </u>	. X	X.	X	×	X			i. A					
2	Elk River (Outfall Bacter	iological /2	2021-10-20	10:20	Water	X	ļ			<u> </u>	<u> </u>		1						_		
Ю	Elk River I	Downstream Ro	utine 73	2021-10-20	10:30	Water		X	X		<u> </u>	<u> </u>				· · · ·				<u> </u>	5./0	<u> </u>
5	Elk River I	Downstream Nut	trients /4	2021-10-20	10:30	Water			L	X	X	X	X	X						_		
	Elk River I	Downstream Ba	cteriological 15	2021-10-20	10:30	Water	X	-	100-				·						È			
						, in a	-		+		-		<u> </u>							=		
		•				je s al s s s s s s s s s s s s s s s s s					<u> </u>											
							<u> </u>		ļ,	ļ		<u> </u>									<u>.</u>	
			2								3.7		Ļ.				<u> </u>		┝──┥	<u>.</u>		
													<u> </u>						┝─┥	لبب		TAKI
		ROUT		SPECIFY DATE		(surcharge may apply)			<u> </u>		İSHED	BY:	•••		DATE				RECE	EIVED		WIT.
	ND REQUIRED:								Car	ter Ba	arrett	. <u> </u>				10:	45 -	10:30	1	$- \mathbf{I}$		
SEND INVOIC	E TO:		AS REPOR DIF	FERENT FRO	DM REPORT (provide details			REL	INQU	ISHED	DBY:			DATE				RECE	EIVED		
INVOICE FOR	RMAT:								-		D			L;	TIME:	L		_	L		TIME	
SPECIAL INS	TRUCTIONS:		X A COPY OF THE F	RESULTS TO 2	50-423-4652 OR	E-MAIL TO			<u> </u>		AB US		NLY_	Same	nle To	moera	iture:	4	•c	Cooliu	ng Method?	
		wasiewalei(Oskifernie.com								eal Inta		N/A	· ·			3		,		epackslc	eNone

G:/QUALITY/00_DOCUMENTS/10_AUTHORIZED/FORMS/CoC for ALS EMS.xls

FERNIE ALPINE RESORT UTILITIES CORPORATION ATTN: Patrick Majer 1505 - 17TH AVENUE SW CALGARY AB T2T 0E2 Date Received: 28-OCT-21 Report Date: 17-NOV-21 14:07 (MT) Version: FINAL

Client Phone: 800-258-7669

Certificate of Analysis

Lab Work Order #: L2656500 Project P.O. #: NOT SUBMITTED Job Reference: FARUC - FALL EMS WEEK 4 C of C Numbers: Legal Site Desc:

Mingl

Patryk Wojciak, B.Sc., P.Chem. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

FARUC - FALL EMS WEEK 4

L2656500 CONTD.... PAGE 2 of 5 Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2656500-1 WWTP INFLUENT							
Sampled By: Carter Barrett on 27-OCT-21 @ 10:00							
Matrix: Water							
Miscellaneous Parameters							
Biochemical Oxygen Demand	20.8		6.0	mg/L		28-OCT-21	R5634437
Total Suspended Solids	51.7		3.0	mg/L		02-NOV-21	R5634652
pH	7.95		0.10	pН		31-OCT-21	R5634423
L2656500-2 WWTP EFFLUENT							
Sampled By: Carter Barrett on 27-OCT-21 @ 10:00							
Matrix: Water							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		16-NOV-21	R5652224
Biochemical Oxygen Demand	<2.0		2.0	mg/L		28-OCT-21	R5634437
Chemical Oxygen Demand	<10		10	mg/L		28-OCT-21	R5632168
Orthophosphate-Dissolved (as P)	0.163	DLHC	0.010	mg/L		28-OCT-21	R5632613
Coliform Bacteria - Fecal	<1		1	CFU/100mL		28-OCT-21	R5633576
Phosphorus (P)-Total	0.181	DLHC	0.010	mg/L		04-NOV-21	R5636152
Total Suspended Solids	<3.0		3.0	mg/L		02-NOV-21	R5634652
рН	7.93		0.10	pН		31-OCT-21	R5634423
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC							
Nitrate (as N)	14.5		0.020	mg/L		28-OCT-21	R5636409
Nitrate+Nitrite	445		0.000			05 NOV 21	
Nitrate and Nitrite (as N) Nitrite in Water by IC	14.5		0.022	mg/L		05-NOV-21	
Nitrite (as N)	<0.010		0.010	mg/L		28-OCT-21	R5636409
L2656500-3 ELK RIVER UPSTREAM							
Sampled By: Carter Barrett on 27-OCT-21 @ 10:05							
Matrix: Water							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		16-NOV-21	R5652224
Orthophosphate-Dissolved (as P)	0.0070		0.0050	mg/L		28-OCT-21	R5632613
Coliform Bacteria - Fecal	12		1	CFU/100mL		28-OCT-21	R5633576
Phosphorus (P)-Total	0.0162		0.0050	mg/L		04-NOV-21	R5636152
Total Suspended Solids	9.5		3.0	mg/L		02-NOV-21	R5634652
рН	8.23		0.10	рН		31-OCT-21	R5634423
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC							
Nitrate (as N)	1.22		0.020	mg/L		28-OCT-21	R5636409
Nitrate+Nitrite Nitrate and Nitrite (as N)	1.22		0.022	mg/L		05-NOV-21	
Nitrite in Water by IC	1.22		0.022	ing/L		0.0-1100-21	
Nitrite (as N)	<0.010		0.010	mg/L		28-OCT-21	R5636409
L2656500-4 ELK RIVER OUTFALL							
Sampled By: Carter Barrett on 27-OCT-21 @ 10:10							
Matrix: Water							
Miscellaneous Parameters							
Ammonia, Total (as N)	0.101		0.050	mg/L		16-NOV-21	R5652224
Orthophosphate-Dissolved (as P)	0.0150		0.0050	mg/L		28-OCT-21	R5632613
Coliform Bacteria - Fecal	92		1	CFU/100mL		28-OCT-21	R5633576
Phosphorus (P)-Total	0.0430		0.0050	mg/L		04-NOV-21	R5636152
Total Suspended Solids	18.1		3.0	mg/L		02-NOV-21	R5634652
	10.1		0.0				10004002

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2656500-4 ELK RIVER OUTFALL Sampled By: Carter Barrett on 27-OCT-21 @ 10:10							
Matrix: Water	7.00		0.40			24 007 24	D5004400
pH NO2, NO3 and Sum of NO2/NO3	7.99		0.10	рН		31-OCT-21	R5634423
Nitrate in Water by IC							
Nitrate (as N)	0.099		0.020	mg/L		28-OCT-21	R5636409
Nitrate+Nitrite	0.000		0.020				
Nitrate and Nitrite (as N)	0.099		0.022	mg/L		05-NOV-21	
Nitrite in Water by IC				_			
Nitrite (as N)	<0.010		0.010	mg/L		28-OCT-21	R5636409
_2656500-5 ELK RIVER DOWNSTREAM							
Sampled By: Carter Barrett on 27-OCT-21 @ 10:15							
Matrix: Water							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		16-NOV-21	R5652224
Orthophosphate-Dissolved (as P)	<0.0050		0.0050	mg/L		28-OCT-21	R5632613
Coliform Bacteria - Fecal	18		1	CFU/100mL		28-OCT-21	R5633576
Phosphorus (P)-Total	0.0080		0.0050	mg/L		04-NOV-21	R5636152
Total Suspended Solids	3.9		3.0	mg/L		02-NOV-21	R5634652
рН	8.19		0.10	рН		31-OCT-21	R5634423
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC							
Nitrate (as N)	1.59		0.020	mg/L		28-OCT-21	R5636409
Nitrate+Nitrite	4.50		0.000				
Nitrate and Nitrite (as N)	1.59		0.022	mg/L		05-NOV-21	
Nitrite in Water by IC Nitrite (as N)	<0.010		0.010	mg/L		28-OCT-21	R5636409

Reference Information

Sample Parameter Qualifier Key:

Qualifier	Description		
DLHC	Detection Limit Raise	d: Dilution required due to high concentration of	of test analyte(s).
est Method R	eferences:		
ALS Test Code	Matrix	Test Description	Method Reference**
BOD-BC-CL	Water	Biochemical Oxygen Demand (BOD)	APHA 5210 B-5 day IncubO2 electrode
oxygen demand dissolved oxygei	(BOD) are determined n meter. Dissolved BO	by diluting and incubating a sample for a spec	ochemical Oxygen Demand (BOD)". All forms of biochemical ified time period, and measuring the oxygen depletion using a nple through a glass fibre filter prior to dilution. Carbonaceous or to incubation.
COD-T-COL-CL	Water	Chemical Oxygen Demand (COD)	APHA 5220 D Colorimetry
Samples are and	alyzed using the closed	I reflux colourimetric method	
FCC-MF-CL	Water	Fecal Coliform Count-MF	APHA 9222D
Coliform bacteria involves an initia	a is enumerated by cult al 24 hour incubation at	turing and colony counting. A known sample vo	brane Filter Technique for Members of the Coliform Group". Jume is filtered through a 0.45 micron membrane filter. The test e growth medium. This method is specific for thermotolerant
N2N3-CALC-CL	Water	Nitrate+Nitrite	CALCULATION
NH3-F-CL	Water	Ammonia by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
			dified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Societ n of trace levels of ammonium in seawater", Roslyn J. Waston ei
NO2-IC-N-CL	Water	Nitrite in Water by IC	EPA 300.1 (mod)
Inorganic anions	are analyzed by lon C	hromatography with conductivity and/or UV de	tection.
NO3-IC-N-CL	Water	Nitrate in Water by IC	EPA 300.1 (mod)
Inorganic anions	are analyzed by lon C	hromatography with conductivity and/or UV de	tection.
P-T-COL-CL	Water	Total P in Water by Colour	APHA 4500-P PHOSPHORUS
	carried out using proce estion of the sample.	dures adapted from APHA Method 4500-P "Ph	osphorus". Total Phosphorus is determined colourimetrically afte
PH-CL	Water	pH	APHA 4500 H-Electrode
		g a pH electrode. All samples analyzed by this nalysis is recommended for pH where highly a	method for pH will have exceeded the 15 minute recommended ccurate results are needed)
PO4-DO-COL-C	L Water	Diss. Orthophosphate in Water by Colour	APHA 4500-P PHOSPHORUS
		dures adapted from APHA Method 4500-P "Ph been lab or field filtered through a 0.45 micron	osphorus". Dissolved Orthophosphate is determined membrane filter.
TSS-CL	Water	Total Suspended Solids	APHA 2540 D-Gravimetric
		dures adapted from APHA Method 2540 "Solic ple through a glass fibre filter, and by drying th	s". Solids are determined gravimetrically. Total suspended solids e filter at 104 deg. C.
ALS test metho	ods may incorporate mo	odifications from specified reference methods t	o improve performance.
The last two lette	ers of the above test co	de(s) indicate the laboratory that performed ar	alytical analysis for that test. Refer to the list below:
	nition Code Labo	ratory Location	

CL

ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA

Chain of Custody Numbers:

Reference Information

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
---------------	--------	-------------------------	--------------------

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS Environmental

ANALYTICAL CHEMISTRY & TESTING SERVICES

Saskate

004 050 4400 THE

1-800-665-0243 Fax: 604-253-6700 Fax: 250-261-5587 -800-668-9878 Fax: 780-513-2191 ax: 780-791-1586 800-668-9878 Fax: 780-437-2311 Free: 1-800-668-9878 Fax: 403-291-0298 1-800-667-7645 Fax: 306-668-8383

www.alsenviro.com

SEND REPORT TO: CHAIN OF CUS								STUDYFURM											PAGE		OF			
CON	PANY:	FERNIE AL	PINE RESORT	UTILITIES CO	RPORATION	ATTN	PATRICK MAJER	AN	ALY	SIS F	REQU	JEST	FED:											
ADE	RESS:	1505 - 17TH	AVENUE SOL	ITH WEST								1.4		<u> </u>					<u> </u>	1.		Γ		
CITY	(:	CALGARY		PROV: ALI	BERTA	POSTAL CODE	T2T 0E2					1.2				1.00		• •						
TEL		403 - 256 - 1	8473	FAX: 403	3 - 244 - 3774	SAMPLER	Carter Barrett			in an the		in di		ies.					1					
PRO	JECT NAME	AND NO.:	FARUC - Fall E	EMS week 4		QUOTE NO:	022020			1				ا آنها. ا				• :		1 .				
POI	NO.:	1		ALS CONTA	ACT: Patryk Woyciak			1. 3				1.1		÷ *.				1.1						
					EMAIL - ADDRES	omajer@skirc	r.com	5				e Al alter 1		:										
REP	ORT FORMA	T:						orm						τ. ^τ .		1 1 .								
	WO#	1	☐ FAX				1	Coliforms		t na p	٩	ò	_		7									
		.5	SAMPLE IDENTIF	ICATION		COLLECTED	MATRIX	Fecal	TSS		Ortho	Total	NH3-N	NO3-N	NO2-N	BOD5	COD	1						nple specific le dates, etc.)
		WWTP Influ	ont Poutino	7	2021-10-27	TIME	Water	щ	н Х	H X	Ō	μ	Ī	ž	ž	ă	ŭ				1 1 1	1.	18 (B)	
	<u></u> ↓{	WWTP Influ		7 2	2021-10-27	10100	Water		×		-484		. · .						. 	+	<u> </u>	<u> </u>	4°C	·
						10:00										X				<u> </u>	12	177		
		WWTP Efflu		<u>3</u> 4	2021-10-27	10,00	Water	2	X	X		<u>.</u>					X		4.1	<u> </u>	<u> </u>	<u> 13</u> .	4	
	-2 (ent Nutrients	<u>'</u> 5	2021-10-27	10:00	Water		148			-				X								
	-				2021-10-27	10:00	Water	· "	<u> </u>		, X	X	X	X	, X ,	·		2.			<u> </u>			
		WWTP Effluent Bacteriological				10:00	Water	X												<u> </u>			<u> </u>	
			stream Nutrient		2021-10-27	10:05	Water		X	X					a	1.15.28				<u></u>	ļ	2.	4 ec	
FOR LAB USE ONLY	-2		stream Bacterio	K	2021-10-27	10:05	Water		P. 1	:	X	<u>х</u>	X	X	X					<u> </u>	L.,			
ЩС		· · · ·	Outfall Routine		2021-10-27	10:05	Water	X									3.				ļ., ,	-	<u></u>	
S US			Outfall Nutrient		2021-10-27	10:10	Water		X	X						1.4				<u> </u>		5.	7°¢	•
LAE	45			<u> </u>	2021-10-27	10:10	Water				X	. X	X	X	X	1						 		
N			Outfall Bacterio	14	2021-10-27	10:10	Water	х						1.5					,					
	5-1-		wnstream Rout		2021-10-27	10:15	Water	3.5	• X	X									فست			3.	400	-
	5		wnstream Nutri		2021-10-27	10:15	Water				×	<u>x</u>	X	X	·X					<u> </u>		L		
-	<u> </u>		wnstream Bacte	enological	2021-10-27	10.5	Water	. X .	2 4. 					<u>مىيە د</u>		1 1	(a .	2.			:* 		<u></u>	
F			C. Marcalantina di		N TRACE											_						 		
, s'			he.										· · ·	-							**************************************			
																					l	<u> </u>		
								-				- <u>-</u>	2						·	 		L		
	<u>. </u>											<u> </u>]		\vdash		L		
TUR	URN AROUND REQUIRED:										NQUIS		BY:		D	ATE:	2	021-1		RECE		BY:	DATE:	[0] []
		<u></u>								Carte	er Bar	rett			1	IME:			1:15	6	<u>Z</u>		TIME:	-400
		فستجتمعه مستحسمه					ovide details			RELI	NOUIS	HED	BY:		D	ATE:	<u>`</u>			RECE	EIVED	BY:	DATE:	,
· · · ·	CIAL INSTRUC				PDF FA										T	IME:	·····	1		Ļ			TIME:	
		onona.	wastewater@sl		L NEGULIO 10 230	J-423-4092 UR E			FOR LAB USE ONLY Cooler Seal Intact? Sample Temperature: ^o C Co					Carr										
								_			es			1	-	n?		-	_	С I		ng Metho epacks		None
													_		_			_	_		_	· · · · · · · · · · · · · · · · · · ·		

G:/QUALITY/00_DOCUMENTS/10_AUTHORIZED/FORMS/CoC for ALS EMS.xls

.

FERNIE ALPINE RESORT UTILITIES CORPORATION ATTN: Patrick Majer 1505 - 17TH AVENUE SW CALGARY AB T2T 0E2 Date Received: 04-NOV-21 Report Date: 18-NOV-21 18:17 (MT) Version: FINAL

Client Phone: 800-258-7669

Certificate of Analysis

Lab Work Order #: L2659158 Project P.O. #: NOT SUBMITTED Job Reference: FARUC-FALL EMS WEEK 5 C of C Numbers: Legal Site Desc:

Mingl

Patryk Wojciak, B.Sc., P.Chem. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2659158-1 WWTP INFLUENT							
Sampled By: CB on 03-NOV-21 @ 09:45							
Matrix: WATER							
Miscellaneous Parameters							
Biochemical Oxygen Demand	54		20	mg/L		04-NOV-21	R5638431
Total Suspended Solids	35.6		3.0	mg/L		09-NOV-21	R5640170
pH	8.13		0.10	pН		07-NOV-21	R5637880
L2659158-2 WWTP EFFLUENT							
Sampled By: CB on 03-NOV-21 @ 09:50							
Matrix: WATER							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		17-NOV-21	R5653860
Biochemical Oxygen Demand	<2.0		2.0	mg/L		04-NOV-21	R5638431
Chemical Oxygen Demand	<10		10	mg/L		09-NOV-21	R5638563
Orthophosphate-Dissolved (as P)	0.0125		0.0050	mg/L		04-NOV-21	R5636945
Coliform Bacteria - Fecal	<1		1	CFU/100mL		04-NOV-21	R5636818
Phosphorus (P)-Total	0.0320		0.0050	mg/L		10-NOV-21	R5640576
Total Suspended Solids	<3.0		3.0	mg/L		09-NOV-21	R5640170
pH	7.88		0.10	рН		07-NOV-21	R5637880
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC							
Nitrate (as N)	11.2		0.020	mg/L		05-NOV-21	R5644541
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	11.2		0.022	mg/L		12-NOV-21	
Nitrite in Water by IC Nitrite (as N)	<0.010		0.010	mg/L		05-NOV-21	R5644541
L2659158-3 ELK RIVER UPSTREAM	<0.010		0.010	iiig/E		00110121	110044041
Sampled By: CB on 03-NOV-21 @ 10:00							
Matrix: WATER							
Matrix. WATER Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		17-NOV-21	R5653860
Orthophosphate-Dissolved (as P)	<0.0050		0.0050	mg/L		04-NOV-21	R5636945
Coliform Bacteria - Fecal	6		1	CFU/100mL		04-NOV-21	R5636818
Phosphorus (P)-Total	<0.0050		0.0050	mg/L		10-NOV-21	R5640576
Total Suspended Solids	<3.0		3.0	mg/L		09-NOV-21	R5640170
pH	8.27		0.10	pH		07-NOV-21	R5637880
NO2, NO3 and Sum of NO2/NO3	0.21		0.10	P			
Nitrate in Water by IC							
Nitrate (as N)	1.50		0.020	mg/L		05-NOV-21	R5644541
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	1.50		0.022	mg/L		12-NOV-21	
Nitrite in Water by IC	0.010		0.040				DEGALEAA
Nitrite (as N)	<0.010		0.010	mg/L		05-NOV-21	R5644541
_2659158-4 ELK RIVER OUTFALL							
Sampled By: CB on 03-NOV-21 @ 10:15							
Matrix: WATER							
Miscellaneous Parameters			0.075			47 101/01	DEGESSIO
Ammonia, Total (as N)	<0.050		0.050	mg/L		17-NOV-21	R5653860
Orthophosphate-Dissolved (as P)	0.0142		0.0050	mg/L		04-NOV-21	R5636945
Coliform Bacteria - Fecal	7		1	CFU/100mL		04-NOV-21	R5636818
Phosphorus (P)-Total	0.0210		0.0050	mg/L		10-NOV-21	R5640576
Total Suspended Solids	<3.0		3.0	mg/L		09-NOV-21	R5640170

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2659158-4 ELK RIVER OUTFALL Sampled By: CB on 03-NOV-21 @ 10:15							
1 ,							
Matrix: WATER			0.40				D.5007000
pH NO2, NO3 and Sum of NO2/NO3	8.11		0.10	рН		07-NOV-21	R5637880
Nitrate in Water by IC							
Nitrate (as N)	0.905		0.020	mg/L		05-NOV-21	R5644541
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	0.905		0.022	mg/L		12-NOV-21	
Nitrite in Water by IC							
Nitrite (as N)	<0.010		0.010	mg/L		05-NOV-21	R5644541
_2659158-5 ELKRIVER DOWNSTREAM							
Sampled By: CB on 03-NOV-21 @ 10:30							
Matrix: WATER							
Miscellaneous Parameters	0.050		0.050			47 101/01	DEGEGGGG
Ammonia, Total (as N)	< 0.050		0.050	mg/L		17-NOV-21	R5653860
Orthophosphate-Dissolved (as P)	<0.0050		0.0050	mg/L		04-NOV-21	R5636945
Coliform Bacteria - Fecal	8		1	CFU/100mL		04-NOV-21	R5636818
Phosphorus (P)-Total	0.0056		0.0050	mg/L		10-NOV-21	R5640576
Total Suspended Solids	<3.0		3.0	mg/L		09-NOV-21	R5640170
рН	8.26		0.10	pН		07-NOV-21	R5637880
NO2, NO3 and Sum of NO2/NO3							
Nitrate in Water by IC	4.45		0.000				DEGALEAA
Nitrate (as N)	1.45		0.020	mg/L		05-NOV-21	R5644541
Nitrate+Nitrite Nitrate and Nitrite (as N)	1.45		0.022	mg/L		12-NOV-21	
Nitrite in Water by IC	1.45		0.022	iiig/L		12-110 -21	
Nitrite (as N)	<0.010		0.010	mg/L		05-NOV-21	R5644541
		1 1		1	1	1	1

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

Reference Information

L2659158 CONTD PAGE 4 of 5

Version: FINAL

Test Method Reference	es:		
ALS Test Code	Matrix	Test Description	Method Reference**
BOD-BC-CL	Water	Biochemical Oxygen Demand (BOD)	APHA 5210 B-5 day IncubO2 electrode
oxygen demand (BOD) ar dissolved oxygen meter.	e determined Dissolved BO	l by diluting and incubating a sample for a speci	ochemical Oxygen Demand (BOD)". All forms of biochemical fied time period, and measuring the oxygen depletion using a nple through a glass fibre filter prior to dilution. Carbonaceous r to incubation.
COD-T-COL-CL	Water	Chemical Oxygen Demand (COD)	APHA 5220 D Colorimetry
Samples are analyzed usi	ng the close	d reflux colourimetric method	
FCC-MF-CL	Water	Fecal Coliform Count-MF	APHA 9222D
Coliform bacteria is enum involves an initial 24 hour	erated by cul incubation a	turing and colony counting. A known sample vo	brane Filter Technique for Members of the Coliform Group". lume is filtered through a 0.45 micron membrane filter. The test e growth medium. This method is specific for thermotolerant
N2N3-CALC-CL	Water	Nitrate+Nitrite	CALCULATION
NH3-F-CL	Water	Ammonia by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
			dified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society n of trace levels of ammonium in seawater", Roslyn J. Waston et
NO2-IC-N-CL	Water	Nitrite in Water by IC	EPA 300.1 (mod)
Inorganic anions are analy	zed by Ion C	Chromatography with conductivity and/or UV det	ection.
NO3-IC-N-CL	Water	Nitrate in Water by IC	EPA 300.1 (mod)
Inorganic anions are analy	zed by Ion C	Chromatography with conductivity and/or UV det	ection.
P-T-COL-CL	Water	Total P in Water by Colour	APHA 4500-P PHOSPHORUS
This analysis is carried ou persulphate digestion of the second s		edures adapted from APHA Method 4500-P "Pho	osphorus". Total Phosphorus is determined colourimetrically after
PH-CL	Water	рН	APHA 4500 H-Electrode
		g a pH electrode. All samples analyzed by this a analysis is recommended for pH where highly ac	method for pH will have exceeded the 15 minute recommended ccurate results are needed)
PO4-DO-COL-CL	Water	Diss. Orthophosphate in Water by Colour	APHA 4500-P PHOSPHORUS
		edures adapted from APHA Method 4500-P "Pho been lab or field filtered through a 0.45 micron r	osphorus". Dissolved Orthophosphate is determined nembrane filter.
TSS-CL	Water	Total Suspended Solids	APHA 2540 D-Gravimetric
This analysis is carried ou (TSS) are determined by t	it using proce filtering a sar	edures adapted from APHA Method 2540 "Solids nple through a glass fibre filter, and by drying th	s". Solids are determined gravimetrically. Total suspended solids e filter at 104 deg. C.
* ALS test methods may ir	ncorporate m	odifications from specified reference methods to	p improve performance.
The last two letters of the	above test c	ode(s) indicate the laboratory that performed an	alytical analysis for that test. Refer to the list below:
Laboratory Definition Co	ode Labo	pratory Location	
CL	ALS	ENVIRONMENTAL - CALGARY, ALBERTA, CA	ANADA

Chain of Custody Numbers:

Reference Information

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
---------------	--------	-------------------------	--------------------

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

" or milerical

ANALYTICAL CHEMISTRY & TESTING SERVICES

SEND REPORT TO:

www.alsenviro.com

vancouver BC, 1956 mumph Street, V5L 1K5, Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253-6700 Fort St. John BC. Box 256 9831 - 984 Avenue 1/1 L6W/7 Tel: 260-261 5517 Fax: 250-261-5587

e: 1-800-668-9878 Fax: 780-513-2191 Fax: 780-791-1586 1-800-668-9878 Fax: 780-437-2311 oll Free: 1-800-668-9878 Fax: 403-291-0298 e: 1-800-667-7645 Fax: 306-668-8383

FERNIE ALPINE RESORT UTILITIES CORPORATION COMPANY ATTN PATRICK MAJER PAGE 1505 - 17TH AVENUE SOUTH WEST ANALYSIS REQUESTED: OF ADDRESS CITY: CALGARY PROV. ALBERTA POSTAL CODE T2T 0E2 403 - 256 - 8473 TEL: FAX: 403 - 244 - 3774 SAMPLER: Carter Barrett FARUC - Fall EMS week 5 PROJECT NAME AND NO .: Q33058 QUOTE NO: PO NO ALS CONTACT Patryk Woyciak HARDCOPY EMAIL - ADDRES REPORT FORMAT: Coliforms FAX PDF OTHER: WO# DATE / TIME COLLECTED SAMPLE IDENTIFICATION NH3-N NO3-N Fecal MATRIX Ortho NO2-N Total BOD5 YYYY-MM-DD TSS TIME ЪН COD NOTES (sample specific WWTP Influent Routine . 9.45 2021-11-03 comments, due dates, etc.) Water WWTP Influent BOD X х 2 2021-11-03 9.45 11-7 Water WWTP Effluent Routine Х 2021-11-03 50 Water WWTP Effluent BOD Χ. X X 11.42 2021-11-03 9,50 Water WWTP Effluent Nutrients х ŝ 2021-11-03 ù. :50 Water WWTP Effluent Bacteriological х X · X · Х х 9:50 2021-11-03 Water х Elk River Upstream Routine 7 2021-11-03 10.00 Water Elk River Upstream Nutrients X X ON 8 2021-11-03 10,00 3 200 Water Elk River Upstream Bacteriological Х Х Х х х 9 LAB USE 2021-11-03 0:00 Water X Elk River @ Outfall Routine 10 2021-11-03 0-15 Water Elk River @ Outfall Nutrients * X Х h 5.5°c 2021-11-03 0115 Water-Elk River @ Outfall Bacteriological FOR I ٠X X х X Х 12 2021-11-03 LOi15 Water X Elk River Downstream Routine 13 2021-11-03 1 30 Water Elk River Downstream Nutrients X ×Х 14 10.30 2021-11-03 3 400 Water Elk River Downstream Bacteriological Х х Х Х Х 15 2021-11-03 10:30 Water X - 28.3 고 고말 ROUTINE ORUSH SPECIFY DATE: _____ TURN AROUND REQUIRED: (surcharge may apply) 2021-11-03 RECEIVED BY: RELINQUISHED BY: DATE SEND INVOICE TO: DATE SAME AS REPORD DIFFERENT FROM REPORT (provide details Carter Barrett 11:15 TIME INVOICE FORMAT: TIME: HARDCOPY RELINQUISHED BY: 🗌 PDF DATE 🗌 FAX RECEIVED BY: SPECIAL INSTRUCTIONS: 11/4 PLEASE FAX A COPY OF THE RESULTS TO 250-423-4652 OR E-MAIL TO DATE TIME wastewater@skifernie.com TIME: RS FOR JAB USE ONLY Cooler Seal Intact? Sample Temperature: Cooling Method? Yes ___No ___N/A Frozen? Yes _No Icepacks

None G:/QUALITY/00_DOCUMENTS/10_AUTHORIZED/FORMS/CoC for ALS EMS.xts

Ice

FERNIE ALPINE RESORT UTILITIES CORPORATION ATTN: Patrick Majer 1505 - 17TH AVENUE SW CALGARY AB T2T 0E2 Date Received: 12-NOV-21 Report Date: 23-NOV-21 13:36 (MT) Version: FINAL

Client Phone: 800-258-7669

Certificate of Analysis

Lab Work Order #: L2662053 Project P.O. #: NOT SUBMITTED Job Reference: FARUC-FALL EMS WEEK 6 C of C Numbers: Legal Site Desc:

May

Patryk Wojciak, B.Sc., P.Chem. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2662053-1 WWTP INFLUENT							
Sampled By: KM on 12-NOV-21 @ 07:20							
Matrix: WATER							
Miscellaneous Parameters							
Biochemical Oxygen Demand	95		20	mg/L		13-NOV-21	R5653487
Total Suspended Solids	127		3.0	mg/L		16-NOV-21	R5652511
рН	8.03		0.10	pH		12-NOV-21	R5648817
L2662053-2 WWTP EFFLUENT							
Sampled By: KM on 12-NOV-21 @ 07:20							
Matrix: WATER							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		22-NOV-21	R5655439
Biochemical Oxygen Demand	<2.0		2.0	mg/L		13-NOV-21	R5653487
Chemical Oxygen Demand	<10		10	mg/L		15-NOV-21	R5648818
Orthophosphate-Dissolved (as P)	0.0852		0.0050	mg/L		12-NOV-21	R5645479
Coliform Bacteria - Fecal	<1		1	CFU/100mL		12-NOV-21	R5647299
Nitrate (as N)	15.7		0.020	mg/L		12-NOV-21	R5649257
Nitrite (as N)	0.011		0.020	mg/L		12-NOV-21	R5649257
Phosphorus (P)-Total	0.0723		0.0050	mg/L		17-NOV-21	R5651766
Total Suspended Solids	<3.0		3.0	mg/L		16-NOV-21	R5652511
pH	7.98		0.10	pH		12-NOV-21	R5648817
NO2, NO3 and Sum of NO2/NO3	7.30		0.10			12110121	113040017
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	15.7		0.022	mg/L		16-NOV-21	
L2662053-3 ELK RIVER UPSTREAM							
Sampled By: KM on 12-NOV-21 @ 07:20							
Matrix: WATER							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		22-NOV-21	R5655439
Orthophosphate-Dissolved (as P)	<0.0050		0.0050	mg/L		12-NOV-21	R5645479
Coliform Bacteria - Fecal	3		1	CFU/100mL		12-NOV-21	R5647299
Nitrate (as N)	1.61		0.020	mg/L		12-NOV-21	R5649257
Nitrite (as N)	<0.010		0.010	mg/L		12-NOV-21	R5649257
Phosphorus (P)-Total	< 0.0050		0.0050	mg/L		17-NOV-21	R5651766
Total Suspended Solids	<3.0		3.0	mg/L		16-NOV-21	R5652511
pH	8.17		0.10	pH		12-NOV-21	R5648817
NO2, NO3 and Sum of NO2/NO3	0.17		5.10	P''			
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	1.61		0.022	mg/L		16-NOV-21	
L2662053-4 ELK RIVER @ OUTFALL							
Sampled By: KM on 12-NOV-21 @ 07:20							
Matrix: WATER							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		22-NOV-21	R5655439
Orthophosphate-Dissolved (as P)	0.0302		0.0050	mg/L		12-NOV-21	R5645479
Coliform Bacteria - Fecal	3		1	CFU/100mL		12-NOV-21	R5647299
Nitrate (as N)	5.55		0.020	mg/L		12-NOV-21	R5649257
Nitrite (as N)	<0.010		0.010	mg/L		12-NOV-21	R5649257
Phosphorus (P)-Total	0.0258		0.0050	mg/L		17-NOV-21	R5651766
Total Suspended Solids	<3.0		3.0	mg/L		16-NOV-21	R5652511
pH	7.96		0.10	pH		12-NOV-21	R5648817
NO2, NO3 and Sum of NO2/NO3	1.90		0.10	pri		12-100 -21	110040017

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2662053-4 ELK RIVER @ OUTFALL							
Sampled By: KM on 12-NOV-21 @ 07:20							
Matrix: WATER							
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	5.55		0.022	mg/L		16-NOV-21	
L2662053-5 ELK RIVER DOWNSTREAM							
Sampled By: KM on 12-NOV-21 @ 07:20							
Matrix: WATER							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.050		0.050	mg/L		22-NOV-21	R5655439
Orthophosphate-Dissolved (as P)	<0.0050		0.0050	mg/L		12-NOV-21	R5645479
Coliform Bacteria - Fecal	3		1	CFU/100mL		12-NOV-21	R5647299
Nitrate (as N)	1.59		0.020	mg/L		12-NOV-21	R5649257
Nitrite (as N)	<0.010		0.010	mg/L		12-NOV-21	R5649257
Phosphorus (P)-Total	<0.0050		0.0050	mg/L		17-NOV-21	R5651766
Total Suspended Solids	<3.0		3.0	mg/L		16-NOV-21	R5652511
рН	8.18		0.10	рН		12-NOV-21	R5648817
NO2, NO3 and Sum of NO2/NO3							
Nitrate+Nitrite Nitrate and Nitrite (as N)	1.59		0.022	mg/L		16-NOV-21	
	1.00		0.022	iiig/L		10110121	
	1						

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

Reference Information

L2662053 CONTD.... PAGE 4 of 5 Version: FINAL

Test Method References	Matrix	Test Description	Method Reference**									
BOD-BC-CL	Water	Biochemical Oxygen Demand (BOD)	APHA 5210 B-5 day IncubO2 electrode									
oxygen demand (BOD) are dissolved oxygen meter. Di	determined ssolved BOE	dures adapted from APHA Method 5210B - "Bioc by diluting and incubating a sample for a specifie	hemical Oxygen Demand (BOD)". All forms of biochemical d time period, and measuring the oxygen depletion using a le through a glass fibre filter prior to dilution. Carbonaceous o incubation.									
COD-T-COL-CL	Water	Chemical Oxygen Demand (COD)	APHA 5220 D Colorimetry									
Samples are analyzed usin	g the closed	reflux colourimetric method										
FCC-MF-CL	Water	Fecal Coliform Count-MF	APHA 9222D									
This analysis is carried out using procedures adapted from APHA Method 9222 "Membrane Filter Technique for Members of the Coliform Group". Coliform bacteria is enumerated by culturing and colony counting. A known sample volume is filtered through a 0.45 micron membrane filter. The test involves an initial 24 hour incubation at 44.5 degrees C of the filter with the appropriate growth medium. This method is specific for thermotolerant bacteria (Fecal) and is used for non-turbid water with a low background bacteria level.												
N2N3-CALC-CL	Water	Nitrate+Nitrite	CALCULATION									
NH3-F-CL	Water	Ammonia by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC									
This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al.												
NO2-IC-N-CL	Water	Nitrite in Water by IC	EPA 300.1 (mod)									
Inorganic anions are analyz	zed by Ion Cł	nromatography with conductivity and/or UV detec	tion.									
NO3-IC-N-CL	Water	Nitrate in Water by IC	EPA 300.1 (mod)									
Inorganic anions are analyz	zed by Ion Cł	nromatography with conductivity and/or UV detec	tion.									
P-T-COL-CL	Water	Total P in Water by Colour	APHA 4500-P PHOSPHORUS									
This analysis is carried out persulphate digestion of the		dures adapted from APHA Method 4500-P "Phos	phorus". Total Phosphorus is determined colourimetrically after									
PH-CL	Water	рН	APHA 4500 H-Electrode									
		a pH electrode. All samples analyzed by this me nalysis is recommended for pH where highly accu	ethod for pH will have exceeded the 15 minute recommended arate results are needed)									
PO4-DO-COL-CL	Water	Diss. Orthophosphate in Water by Colour	APHA 4500-P PHOSPHORUS									
		dures adapted from APHA Method 4500-P "Phos been lab or field filtered through a 0.45 micron me	phorus". Dissolved Orthophosphate is determined mbrane filter.									
TSS-CL	Water	Total Suspended Solids	APHA 2540 D-Gravimetric									
This analysis is carried out (TSS) are determined by fil	using proced tering a sam	dures adapted from APHA Method 2540 "Solids". ple through a glass fibre filter, and by drying the f	Solids are determined gravimetrically. Total suspended solids iilter at 104 deg. C.									
** ALS test methods may inc	corporate mo	difications from specified reference methods to ir	nprove performance.									
The last two letters of the a	bove test co	de(s) indicate the laboratory that performed analy	rtical analysis for that test. Refer to the list below:									
Laboratory Definition Cod	le Labor	ratory Location										
CL	ALS E	NVIRONMENTAL - CALGARY, ALBERTA, CAN	ADA									

Chain of Custody Numbers:

Reference Information

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
---------------	--------	-------------------------	--------------------

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS Environmental

www.alsenviro.com

ANALYTICAL CHEMISTRY & TESTING SERVICES

v

The Street 1/51 1K5. Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253-6700

L2662053-COFC

00 T-1.

31-5517 Fax: 250-261-5587 || Free: 1-800-668-9878 Fax: 780-513-2191 1524 Fax: 780-791-1586 Free: 1-800-668-9878 Fax: 780-437-2311 97 Toll Free: 1-800-668-9878 Fax: 403-291-0298 oll Free: 1-800-667-7645 Fax: 306-668-8383

SEND	REPORT	Ω·					CHAIN OF C	100	i y	.		RM										PAGE	OF	
	PANY:		INE RESORT	JTILITIES CORPOR	RATION	ATTN	PATRICK MAJER				REQU													
	RESS:	1505 - 17TH	AVENUE SOU	THWEST				2 22		200		2. 						2						
CITY:		CALGARY		PROV: ALBER	Ā	POSTAL CODE	T2T 0E2					×								مو ^{ریمی} د. د				
TEL:		403 - 256 - 8	473	FAX: 403 - 24		SAMPLER	Kevin Mackey			# *		****		2 - 14 2 - 14 2 - 14				19.00°						
	JECT NAME	AND NO .:	FARUC - Fall E	MS week 6		QUOTE NO							ļ	5 - 1				- <u>.</u>						
PO N				ALS CONTACT:	Patryk Woyciak					1				1				ľ						
					AL - ADDRES	pmajer@skire	br.com	s																
REPO	ORT FORMA	त:	FAX		PDF	OTHER:		Coliforms						algue.						1000 1000				
	WO#					COLLECTED					Ч Ч	۹ I	z	z	z	5		50 - 1 1				NOTES (ample sp	ecific
4		S	AMPLE IDENTIFI	ICATION	YYYY-MM-DD	TIME	MATRIX	Fecal	TSS	На	Ortho	Total	-EHN	N-CON	NO2-	BOD5	COD					comments,		
		WWTP Influ	ent Routine	and and and and and and and and and and	2021-11-12	7:20	Water		X	X					.3,					4		#-	- 9	1.8
i sje	<u> </u>	WWTP Influ	the particular part	<u> </u>	2021-11-12		Water		<u> </u>							х							1	
		WWTP Efflu	ent Routine		2021-11-12		Water	ir".	X	. X					÷.,		X				n i Ara a	-	11-8	~
21. 7.		WWTP Efflu	ent BOD	<u></u>	2021-11-12		Water									Х								
	~	WWTP Efflu	ent Nutrients		2021-11-12		Water			х Д	X	Χ.	X	X	X	- - -	Ę.	4		· 1				
<u>۲ ااا</u>		WWTP Efflu	ent Bacteriologi	ical	2021-11-12	. 1	Water	х															1	
		7	stream Routine		2021-11-12	1:30	Water		X	X					ann An Anna			a.				2	įŦ_	~
		Elk River Upstream Nutrients			2021-11-12		Water				X	х	х	х	x					Ļ			<u> </u>	
LAB USE ONLY		Elk River Upstream Bacteriological			2021-11-12		Water	X		2		a V		ц; ¹				Т.					, 	
ЯE		Elk River @	Outfall Routine		2021-11-12	7140	Water		X	X							-	- Anna				5.		
Ц В	1.00%	Elk River @	Outfall Nutrient	S*	2021-11-12	1 + T	Water			F ig. 2014	X	. Х	X	χ.	X	. द ई	· · ·	4		<u>a.</u>	_ : : 			
3		Elk River @	Outfall Bacteric	ological	2021-11-12		Water	X									_			<u> </u>			<u> </u>	
FOR		Elk River Do	wnstream Rout	ine	2021-11-12	7,50	Water	2 11 2	X	X		`			1					4		2.	<u> </u>	
		Elk River Do	wnstream Nutri	ents	2021-11-12		Water				X	X	X	X	X					<u> </u>	ļ'			
<u></u>	• • •	- Elk River Do	wnstream Bact	eriological	2021-11-12	· · · ·	Water	X					;		E F	а ^с	· .	ŝ.		 		4		
				7							<u> </u>									ļ				
		126	6. 702	2		محمد الي وي من الم التي من المحمد التي من المحمد التي وي المحمد التي التي من المحمد التي التي التي التي التي ا التي التي التي التي التي التي التي التي	- بالمراجعة - بالمراجعة بالمراجعة بالمراجع - بالمراجع - بالمراجع - بالمراجع - بالمراجع - بالمراجع - بالمراجع -		*******	· 					÷					<u>ha</u>				
															ļ				<u> </u>		<u> </u>			
								, and the	2	1. 1. <u>1</u> . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		1	e ^{gi} '		ļ	 				1	<u> </u>			
							<u></u>	L			<u> </u>	<u> </u>	Ļ	بسبل		L				<u> </u>	<u> </u>			5/11
TUR		REQUIRED:	ROUTI		SPECIFY DATE	:	_ (surcharge may apply)			-	INQUI		BY:			DATE:	- 2				ENE	117 1	11. 3	RO
							muide details		·····	+	in Ma					TIME:			11:15	+	_4	BY: DAT		5
	DINVOICE						TOVIDE DELGID			REL	INQUI	SHED	BY	<u> (</u>	1 - 2	DATE:			$\overline{}$	REC	EIVED	TIM		
										E0	R LA	BUS	FO			TIME:	L	-(A	ل ــــه			<u>=</u>	
SPECIAL INSTRUCTIONS: PLEASE FAX A COPY OF THE RESU wastewater@skifemie.com						0-423-4032 OK					ler Sea				Sam	ple Te	mpera	ture:	U	°c	Cool	Cooling Method?		
												YesNoN/A Frozen?YesNo							!	lcepackslceNone				

G:/QUALITY/00_DOCUMENTS/10_AUTHORIZED/FORMS/CoC for ALS EMS.xis

C

CERTIFICATE OF ANALYSIS

Work Order	CG2106829	Page	: 1 of 5
Client	E Fernie Alpine Resort Utilities	Laboratory	Calgary - Environmental
	Corporation		
Contact	: Patrick Majer	Account Manager	: Patryk Wojciak
Address	: 1505 - 17TH AVENUE SW	Address	2559 29th Street NE
	Calgary AB Canada T2T 0E2		Calgary AB Canada T1Y 7B5
Telephone	: 403 254 7669	Telephone	: +1 403 407 1800
Project	: FARUC - WINTER EMS WEEK 1	Date Samples Received	: 16-Dec-2021 09:00
PO	:	Date Analysis	: 16-Dec-2021
		Commenced	
C-O-C number	:	Issue Date	: 23-Dec-2021 17:29
Sampler	:		
Site	:		
Quote number	: CG21-FARU100-0002		
No. of samples received	: 5		
No. of samples analysed	: 5		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Katarzyna Glinka	Analyst	Inorganics, Calgary, Alberta
Maria Tuguinay	Lab Assistant	Inorganics, Calgary, Alberta
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Sunil Palak		Microbiology, Calgary, Alberta

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance. Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
CFU/100mL	colony forming units per 100 mL
mg/L	milligrams per litre
pH units	pH units

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).

<: less than.

Analytical Results

CG2106829-001								
Sub-Matrix:Water		Client san	nple ID: WW	P INFLUENT				
(Matrix: Water)		Client san	npling date / i	time: 15-Dec-20	021 10:30			
Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
рН		7.77	0.10	pH units	E108	20-Dec-2021	20-Dec-2021	372513
solids, total suspended [TSS]		78.5	3.0	mg/L	E160-H	-	21-Dec-2021	372491
Aggregate Organics								
biochemical oxygen demand [BOD]		81.6	20.0	mg/L	E550	-	16-Dec-2021	370488
Please refer to the General Comments section	for an explanation of any	qualifiers detec	ted.			- ·		

Analytical Results

CG2106829-002

Sub-Matrix:Water	b-Matrix: Water Client sample ID: WWTP EFF				FFLUENT				
(Matrix: Water)		Client san	npling date / ti	ime: 15-Dec-2	021 10:40				
Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date			

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
pН		8.08	0.10	pH units	E108	20-Dec-2021	20-Dec-2021	372513
solids, total suspended [TSS]		<3.0	3.0	mg/L	E160-H	-	21-Dec-2021	372491
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	0.0202	0.0050	mg/L	E298	16-Dec-2021	16-Dec-2021	370124
nitrate (as N)	14797-55-8	26.3	0.0250	mg/L	E235.NO3-L	18-Dec-2021	18-Dec-2021	371379
nitrite (as N)	14797-65-0	0.0120	0.0010	mg/L	E235.NO2-L	18-Dec-2021	18-Dec-2021	371380
phosphate, ortho-, dissolved (as P)	14265-44-2	0.370 DLHC,	0.0050	mg/L	E378-U	16-Dec-2021	16-Dec-2021	369928
phosphorus, total	7723-14-0	0.415	0.0200	mg/L	E372-U	21-Dec-2021	21-Dec-2021	369764
nitrate + nitrite (as N)		26.3	0.0250	mg/L	EC235.N+N	-	20-Dec-2021	-
Bacteriological Tests								
coliforms, thermotolerant [fecal]		1	1	CFU/100mL	E012.FC	-	16-Dec-2021	372373
Aggregate Organics								
biochemical oxygen demand [BOD]		<2.0	2.0	mg/L	E550	-	16-Dec-2021	370488
chemical oxygen demand [COD]		<10	10	mg/L	E559-L	-	17-Dec-2021	370570

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

CG2106829-003 Sub-Matrix:Water

(Matrix: Water)

Client sample ID: ELK RIVER UPSTREAM Client sampling date / time: 15-Dec-2021 10:50

Analyte Result LOR Unit Method Prep Date QCLot CAS Number Analysis Date Physical Tests рΗ 8.31 0.10 pH units E108 20-Dec-2021 20-Dec-2021 372513 ----solids, total suspended [TSS] <3.0 3.0 mg/L E160-H -21-Dec-2021 ____ 372491 Anions and Nutrients ammonia, total (as N) 0.0052 0.0050 E298 16-Dec-2021 7664-41-7 mg/L 16-Dec-2021 370124 0.0050 E235.NO3-L 18-Dec-2021 nitrate (as N) 1.67 mg/L 14797-55-8 18-Dec-2021 371379 nitrite (as N) 0.0025 0.0010 mg/L E235.NO2-L 18-Dec-2021 14797-65-0 18-Dec-2021 371380 0.0044 0.0010 E378-U phosphate, ortho-, dissolved (as P) 14265-44-2 mg/L 16-Dec-2021 16-Dec-2021 369928 phosphorus, total 7723-14-0 0.0059 0.0020 mg/L E372-U 21-Dec-2021 21-Dec-2021 369764

Analytical Results

CG2106829-003								
Sub-Matrix: Water		Client sam	ple ID: ELK	RIVER UPSTR	EAM			
(Matrix: Water)		Client sam	pling date / i	time: 15-Dec-20	021 10:50			
Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Anions and Nutrients								
nitrate + nitrite (as N)		1.67	0.0051	mg/L	EC235.N+N	-	20-Dec-2021	-
Bacteriological Tests								
coliforms, thermotolerant [fecal]		8	1	CFU/100mL	E012.FC	-	16-Dec-2021	372373

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

CG2106829-004

Sub-Matrix:Water (Matrix: Water)

Client sample ID: ELK RIVER @ OUTFALL Client sampling date / time: 15-Dec-2021 11:00

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
рН		8.18	0.10	pH units	E108	20-Dec-2021	20-Dec-2021	372513
solids, total suspended [TSS]		<3.0	3.0	mg/L	E160-H	-	21-Dec-2021	372491
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	<0.0050	0.0050	mg/L	E298	16-Dec-2021	16-Dec-2021	370124
nitrate (as N)	14797-55-8	1.59	0.0050	mg/L	E235.NO3-L	18-Dec-2021	18-Dec-2021	371379
nitrite (as N)	14797-65-0	0.0027	0.0010	mg/L	E235.NO2-L	18-Dec-2021	18-Dec-2021	371380
phosphate, ortho-, dissolved (as P)	14265-44-2	0.0219	0.0010	mg/L	E378-U	16-Dec-2021	16-Dec-2021	369928
phosphorus, total	7723-14-0	0.0208	0.0020	mg/L	E372-U	21-Dec-2021	21-Dec-2021	369764
nitrate + nitrite (as N)		1.59	0.0051	mg/L	EC235.N+N	-	20-Dec-2021	-
Bacteriological Tests								
coliforms, thermotolerant [fecal]		1	1	CFU/100mL	E012.FC	-	16-Dec-2021	372373

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

CG2106829-005

Sub-Matrix:Water (Matrix: Water)

Client sample ID: ELK RIVER DOWNSTREAM

Client sampling date / time: 15-Dec-2021 11:10

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
рН		8.34	0.10	pH units	E108	20-Dec-2021	20-Dec-2021	372513
solids, total suspended [TSS]		<3.0	3.0	mg/L	E160-H	-	21-Dec-2021	372491
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	0.0086	0.0050	mg/L	E298	16-Dec-2021	16-Dec-2021	370124
nitrate (as N)	14797-55-8	1.66	0.0050	mg/L	E235.NO3-L	18-Dec-2021	18-Dec-2021	371379
nitrite (as N)	14797-65-0	0.0025	0.0010	mg/L	E235.NO2-L	18-Dec-2021	18-Dec-2021	371380
phosphate, ortho-, dissolved (as P)	14265-44-2	0.0038	0.0010	mg/L	E378-U	16-Dec-2021	16-Dec-2021	369928
phosphorus, total	7723-14-0	0.0054	0.0020	mg/L	E372-U	21-Dec-2021	21-Dec-2021	369764
nitrate + nitrite (as N)		1.66	0.0051	mg/L	EC235.N+N	-	20-Dec-2021	-
Bacteriological Tests								
coliforms, thermotolerant [fecal]		9	1	CFU/100mL	E012.FC	-	16-Dec-2021	372373

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	CG2106829	Page	: 1 of 9
Client		Laboratory	: Calgary - Environmental
	Fernie Alpine Resort Utilities Corporation	· · · · · · · · · · · · · · · · · · ·	5 ,
Contact	: Patrick Majer	Account Manager	: Patryk Wojciak
Address	: 1505 - 17TH AVENUE SW	Address	2559 29th Street NE
	Calgary AB Canada T2T 0E2		Calgary, Alberta Canada T1Y 7B5
Telephone	: 403 254 7669	Telephone	: +1 403 407 1800
Project	: FARUC - WINTER EMS WEEK 1	Date Samples Received	: 16-Dec-2021 09:00
PO	:	Issue Date	: 23-Dec-2021 17:29
C-O-C number			
Sampler			
Site	:		
Quote number	: CG21-FARU100-0002		
No. of samples received	:5		
No. of samples analysed	: 5		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- <u>No</u> Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- <u>No</u> Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• <u>No</u> Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

latrix: Water					Ev	aluation: × =	Holding time exce	edance ; •	<pre>< = Within</pre>	Holding Tir
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	, Times	Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Biochemical Oxygen Demand - 5 day										
HDPE [BOD HT 3d]										
WWTP EFFLUENT	E550	15-Dec-2021					16-Dec-2021	3 days	1 days	✓
Aggregate Organics : Biochemical Oxygen Demand - 5 day										
HDPE [BOD HT 3d]										
WWTP INFLUENT	E550	15-Dec-2021					16-Dec-2021	3 days	1 days	✓
Aggregate Organics : Chemical Oxygen Demand by Colourimetry (Low Level)										
Amber glass total (sulfuric acid)										
WWTP EFFLUENT	E559-L	15-Dec-2021					17-Dec-2021	28 days	2 days	1
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
ELK RIVER @ OUTFALL	E298	15-Dec-2021	16-Dec-2021				16-Dec-2021	28 days	1 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
ELK RIVER DOWNSTREAM	E298	15-Dec-2021	16-Dec-2021				16-Dec-2021	28 days	1 days	1
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
ELK RIVER UPSTREAM	E298	15-Dec-2021	16-Dec-2021				16-Dec-2021	28 days	1 days	~
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
WWTP EFFLUENT	E298	15-Dec-2021	16-Dec-2021				16-Dec-2021	28 days	1 days	1

atrix: Water				=		aluation. × –	Holding time exce			Holding
Inalyte Group Container / Client Sample ID(s)	Method	Sampling Date	Exi Preparation Date	traction / Pr Holding Rec	eparation g Times Actual	Eval	Analysis Date	Analys Holding Rec	sis g Times Actual	Eval
nions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trac	e Level)									
HDPE ELK RIVER @ OUTFALL	E378-U	15-Dec-2021					16-Dec-2021	3 days	1 days	1
nions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trac	e Level)									
HDPE ELK RIVER DOWNSTREAM	E378-U	15-Dec-2021					16-Dec-2021	3 days	1 days	~
nions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trac	e Level)						1			
HDPE ELK RIVER UPSTREAM	E378-U	15-Dec-2021					16-Dec-2021	3 days	1 days	1
nions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trac	e Level)									
HDPE WWTP EFFLUENT	E378-U	15-Dec-2021					16-Dec-2021	3 days	1 days	*
nions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE ELK RIVER @ OUTFALL	E235.NO3-L	15-Dec-2021					18-Dec-2021	3 days	3 days	*
nions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE ELK RIVER DOWNSTREAM	E235.NO3-L	15-Dec-2021					18-Dec-2021	3 days	3 days	*
nions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE ELK RIVER UPSTREAM	E235.NO3-L	15-Dec-2021					18-Dec-2021	3 days	3 days	*
nions and Nutrients : Nitrate in Water by IC (Low Level)							1			
HDPE WWTP EFFLUENT	E235.NO3-L	15-Dec-2021					18-Dec-2021	3 days	3 days	1
nions and Nutrients : Nitrite in Water by IC (Low Level)							I			
HDPE ELK RIVER @ OUTFALL	E235.NO2-L	15-Dec-2021					18-Dec-2021	3 days	3 days	1

			-	and the second			Holding time exce			
Analyte Group Container / Client Sample ID(s)	Method	Sampling Date	Preparation Date	Holding Rec	eparation g Times Actual	Eval	Analysis Date	Analys Holding Rec	g Times Actual	Eval
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE ELK RIVER DOWNSTREAM	E235.NO2-L	15-Dec-2021					18-Dec-2021	3 days	3 days	1
nions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE ELK RIVER UPSTREAM	E235.NO2-L	15-Dec-2021					18-Dec-2021	3 days	3 days	*
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE WWTP EFFLUENT	E235.NO2-L	15-Dec-2021					18-Dec-2021	3 days	3 days	1
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid) ELK RIVER @ OUTFALL	E372-U	15-Dec-2021	21-Dec-2021				21-Dec-2021	28 days	6 days	1
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid) ELK RIVER DOWNSTREAM	E372-U	15-Dec-2021	21-Dec-2021				21-Dec-2021	28 days	6 days	1
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid) ELK RIVER UPSTREAM	E372-U	15-Dec-2021	21-Dec-2021				21-Dec-2021	28 days	6 days	1
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid) WWTP EFFLUENT	E372-U	15-Dec-2021	21-Dec-2021				21-Dec-2021	28 days	6 days	~
Bacteriological Tests : Thermotolerant (Fecal) Coliform (MF-mFC)										
Sterile HDPE (Sodium thiosulphate) ELK RIVER @ OUTFALL	E012.FC	15-Dec-2021					16-Dec-2021	30 hrs	24 hrs	✓
Bacteriological Tests : Thermotolerant (Fecal) Coliform (MF-mFC)										
Sterile HDPE (Sodium thiosulphate) ELK RIVER DOWNSTREAM	E012.FC	15-Dec-2021					16-Dec-2021	30 hrs	24 hrs	~

						raidation.	Holding time exce			
Analyte Group	Method	Sampling Date		traction / Pr		- ·	Anglai Dá	Analys		
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
Sacteriological Tests : Thermotolerant (Fecal) Coliform (MF-mFC)										
Sterile HDPE (Sodium thiosulphate) ELK RIVER UPSTREAM	E012.FC	15-Dec-2021					16-Dec-2021	30 hrs	24 hrs	1
Bacteriological Tests : Thermotolerant (Fecal) Coliform (MF-mFC)										
Sterile HDPE (Sodium thiosulphate) WWTP EFFLUENT	E012.FC	15-Dec-2021					16-Dec-2021	30 hrs	24 hrs	1
Physical Tests : pH by Meter							I			
HDPE ELK RIVER @ OUTFALL	E108	15-Dec-2021					20-Dec-2021	0.25 hrs	119 hrs	¥ EHTR-FN
Physical Tests : pH by Meter										
HDPE ELK RIVER DOWNSTREAM	E108	15-Dec-2021					20-Dec-2021	0.25 hrs	119 hrs	¥ EHTR-FI
Physical Tests : pH by Meter							1			
HDPE ELK RIVER UPSTREAM	E108	15-Dec-2021					20-Dec-2021	0.25 hrs	119 hrs	¥ EHTR-FI
Physical Tests : pH by Meter										1
HDPE WWTP EFFLUENT	E108	15-Dec-2021					20-Dec-2021	0.25 hrs	119 hrs	¥ EHTR-FI
Physical Tests : pH by Meter										
HDPE WWTP INFLUENT	E108	15-Dec-2021					20-Dec-2021	0.25 hrs	119 hrs	¥ EHTR-FI
Physical Tests : TSS by Gravimetry										1
HDPE ELK RIVER @ OUTFALL	E160-H	15-Dec-2021					21-Dec-2021	7 days	6 days	~
Physical Tests : TSS by Gravimetry										
HDPE ELK RIVER DOWNSTREAM	E160-H	15-Dec-2021					21-Dec-2021	7 days	6 days	~

Matrix: Water					E٧	aluation: × =	Holding time excee	edance ; v	= Within	Holding Time
Analyte Group	Method Sampling Date E		Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TSS by Gravimetry										
HDPE ELK RIVER UPSTREAM	E160-H	15-Dec-2021					21-Dec-2021	7 days	6 days	✓
Physical Tests : TSS by Gravimetry										
HDPE WWTP EFFLUENT	E160-H	15-Dec-2021					21-Dec-2021	7 days	6 days	√
Physical Tests : TSS by Gravimetry										
HDPE WWTP INFLUENT	E160-H	15-Dec-2021					21-Dec-2021	7 days	6 days	√

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water Quality Control Sample Type			uation: × = QC frequency outside specification; ✓ = QC frequency within Count Frequency (%)					
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)					, 1010101			
Ammonia by Fluorescence	E298	370124	1	20	5.0	5.0	1	
Biochemical Oxygen Demand - 5 day	E550	370488	1	20	5.0	5.0	 ✓	
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	370570	1	18	5.5	5.0	 ✓	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	369928	1	20	5.0	5.0		
Nitrate in Water by IC (Low Level)	E235.NO3-L	371379	1	20	5.0	5.0		
Nitrite in Water by IC (Low Level)	E235.NO2-L	371380	1	20	5.0	5.0		
pH by Meter	E108	372513	1	20	5.0	5.0		
Thermotolerant (Fecal) Coliform (MF-mFC)	E012.FC	372373	1	20	5.0	5.0		
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	369764	1	20	5.0	5.0		
TSS by Gravimetry	E160-H	372491	1	20	5.0	5.0		
Laboratory Control Samples (LCS)			· ·				¥	
Ammonia by Fluorescence	E298	370124	1	20	5.0	5.0	✓	
Biochemical Oxygen Demand - 5 day	E550	370488	1	20	5.0	5.0		
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	370570	1	18	5.5	5.0	 ✓	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	369928	1	20	5.0	5.0	 ✓	
Nitrate in Water by IC (Low Level)	E235.NO3-L	371379	1	20	5.0	5.0	 ✓	
Nitrite in Water by IC (Low Level)	E235.NO2-L	371380	1	20	5.0	5.0		
pH by Meter	E108	372513	1	20	5.0	5.0		
Total Phosphorus by Colourimetry (Ultra Trace)	E 100	369764	1	20	5.0	5.0	 ✓	
TSS by Gravimetry	E160-H	372491	1	20	5.0	5.0		
Method Blanks (MB)	210011						•	
Ammonia by Fluorescence	E298	370124	1	20	5.0	5.0	✓	
Biochemical Oxygen Demand - 5 day	E550	370488	1	20	5.0	5.0	 ✓	
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	370570	1	18	5.5	5.0	 ✓	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	369928	1	20	5.0	5.0		
Nitrate in Water by IC (Low Level)	E235.NO3-L	371379	1	20	5.0	5.0		
Nitrite in Water by IC (Low Level)	E235.NO2-L	371380	1	20	5.0	5.0		
Thermotolerant (Fecal) Coliform (MF-mFC)	E012.FC	372373	1	20	5.0	5.0		
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	369764	1	20	5.0	5.0		
TSS by Gravimetry	E160-H	372491	1	20	5.0	5.0	 ✓	
Matrix Spikes (MS)			· ·				•	
Ammonia by Fluorescence	E298	370124	1	20	5.0	5.0	✓	
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	370570	1	18	5.5	5.0	 	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E335-L	369928	1	20	5.0	5.0	 ✓	
Nitrate in Water by IC (Low Level)	E235.NO3-L	371379	1	20	5.0	5.0	√	
Nitrite in Water by IC (Low Level)	E235.NO3-L	371380	1	20	5.0	5.0	¥	
Total Phosphorus by Colourimetry (Ultra Trace)	E233:NO2-L E372-U	369764	1	20	5.0	5.0	 ✓	

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Thermotolerant (Fecal) Coliform (MF-mFC)	E012.FC Calgary - Environmental	Water	APHA 9222 D (mod)	Following filtration (0.45 μ m), and incubation at 44.5 \pm 0.2°C for 22-26 hours, colonies exhibiting characteristic morphology of the target organism are enumerated and confirmed.
pH by Meter	E108 Calgary - Environmental	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
TSS by Gravimetry	E160-H Calgary - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
Nitrite in Water by IC (Low Level)	E235.NO2-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U Calgary - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a flow analyzer on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Biochemical Oxygen Demand - 5 day	E550 Calgary - Environmental	Water	APHA 5210 B (mod)	Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Free chlorine is a negative interference in the BOD method; please advise ALS when free chlorine is present in samples.
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L Calgary - Environmental	Water	APHA 5220 D (mod)	Samples are analyzed using the closed reflux colourimetric method.
Nitrate and Nitrite (as N) (Calculation)	EC235.N+N Calgary - Environmental	Water	EPA 300.0	Nitrate and Nitrite (as N) is a calculated parameter. Nitrate and Nitrite (as N) = Nitrite (as N) + Nitrate (as N).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions

Page	: 9 of 9
Work Order	: CG2106829
Client	: Fernie Alpine Resort Utilities Corporation
Project	: FARUC - WINTER EMS WEEK 1

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
	Calgary - Environmental			
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	Calgary - Environmental			

QUALITY CONTROL REPORT

Work Order	CG2106829	Page	: 1 of 6
Client	: Fernie Alpine Resort Utilities Corporation	Laboratory	: Calgary - Environmental
Contact	Patrick Majer	Account Manager	: Patryk Wojciak
Address	: 1505 - 17TH AVENUE SW	Address	2559 29th Street NE
Telephone	Calgary AB Canada T2T 0E2 : 403 254 7669	Telephone	Calgary, Alberta Canada T1Y 7B5 :+1 403 407 1800
Project	: FARUC - WINTER EMS WEEK 1	Date Samples Received	: 16-Dec-2021 09:00
PO	:	Date Analysis Commenced	: 16-Dec-2021
C-O-C number	:	Issue Date	:23-Dec-2021 17:29
Sampler	:		
Site	:		
Quote number	: CG21-FARU100-0002		
No. of samples received	: 5		
No. of samples analysed	: 5		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Katarzyna Glinka	Analyst	Inorganics, Calgary, Alberta	
Maria Tuguinay	Lab Assistant	Inorganics, Calgary, Alberta	
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta	
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta	
Sara Niroomand		Inorganics, Calgary, Alberta	
Sunil Palak		Microbiology, Calgary, Alberta	

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

- Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.
- CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.
- DQO = Data Quality Objective.
- LOR = Limit of Reporting (detection limit).
- RPD = Relative Percentage Difference
- # = Indicates a QC result that did not meet the ALS DQO.

Page	: 3 of 6
Work Order	: CG2106829
Client	: Fernie Alpine Resort Utilities Corporation
Project	: FARUC - WINTER EMS WEEK 1

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 372491)										
CG2106829-001	WWTP INFLUENT	solids, total suspended [TSS]		E160-H	3.0	mg/L	78.5	87.9	11.3%	20%	
Physical Tests (QC	Lot: 372513)										
CG2106826-001	Anonymous	рН		E108	0.10	pH units	7.79	7.81	0.256%	4%	
Anions and Nutrien	ts (QC Lot: 369764)										
CG2106773-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0200	mg/L	0.300	0.291	3.24%	20%	
Anions and Nutrien	ts (QC Lot: 369928)										
CG2106829-002	WWTP EFFLUENT	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0050	mg/L	0.370	0.372	0.607%	20%	
Anions and Nutrien	ts (QC Lot: 370124)										
CG2106826-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.125	mg/L	9.33	9.43	1.07%	20%	
Anions and Nutrien	ts (QC Lot: 371379)										
CG2106832-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0250	mg/L	5.50	5.31	3.54%	20%	
Anions and Nutrien	ts (QC Lot: 371380)										
CG2106832-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0050	mg/L	0.0124	0.0075	0.0049	Diff <2x LOR	
Bacteriological Tes	ts (QC Lot: 372373)										
CG2106829-002	WWTP EFFLUENT	coliforms, thermotolerant [fecal]		E012.FC	1	CFU/100mL	1	1	0	Diff <2x LOR	
Aggregate Organic	s (QC Lot: 370488)										
CG2106824-004	Anonymous	biochemical oxygen demand [BOD]		E550	2.0	mg/L	<2.0	<2.0	0.0%	30%	
Aggregate Organic	s (QC Lot: 370570)			1		1		1			
CG2106829-002	WWTP EFFLUENT	chemical oxygen demand [COD]		E559-L	10	mg/L	<10	<10	0	Diff <2x LOR	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water						
Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 372491)						
solids, total suspended [TSS]		E160-H	3	mg/L	<3.0	
Anions and Nutrients (QCLot: 369764)						
ohosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 369928)						
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 370124)						
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 371379)						
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 371380)						
nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	<0.0010	
Bacteriological Tests (QCLot: 372373)						
coliforms, thermotolerant [fecal]		E012.FC	1	CFU/100mL	<1	
Aggregate Organics (QCLot: 370488)						
biochemical oxygen demand [BOD]		E550	2	mg/L	<2.0	
Aggregate Organics (QCLot: 370570)						
chemical oxygen demand [COD]		E559-L	10	mg/L	<10	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water	Laboratory Control Sample (LCS) Report												
					Spike	Recovery (%)	Recovery	Limits (%)					
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier				
Physical Tests (QCLot: 372491)													
solids, total suspended [TSS]		E160-H	3	mg/L	150 mg/L	100	85.0	115					
Physical Tests (QCLot: 372513)													
pH		E108		pH units	7 pH units	100	98.6	101					
Anions and Nutrients (QCLot: 369764)													
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	8.02 mg/L	96.1	80.0	120					
Anions and Nutrients (QCLot: 369928)													
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.02 mg/L	99.3	80.0	120					
Anions and Nutrients (QCLot: 370124)													
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	106	85.0	115					
Anions and Nutrients (QCLot: 371379)													
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	103	90.0	110					
Anions and Nutrients (QCLot: 371380)													
nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	103	90.0	110					
Aggregate Organics (QCLot: 370488)													
biochemical oxygen demand [BOD]		E550	2	mg/L	198 mg/L	91.3	85.0	115					
Aggregate Organics (QCLot: 370570)													
chemical oxygen demand [COD]		E559-L	10	mg/L	100 mg/L	102	85.0	115					

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							Matrix Spil	ke (MS) Report		
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Anions and Nutr	ients (QCLot: 369764)									
CG2106829-002	WWTP EFFLUENT	phosphorus, total	7723-14-0	E372-U	ND mg/L	0.0676 mg/L	ND	70.0	130	
Anions and Nutr	ients (QCLot: 369928)									
CG2106829-003	ELK RIVER UPSTREAM	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0522 mg/L	0.05 mg/L	104	70.0	130	
Anions and Nutr	ients (QCLot: 370124)									
CG2106850-012	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.104 mg/L	0.1 mg/L	104	75.0	125	
Anions and Nutr	ients (QCLot: 371379)									
CG2106832-002	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	ND mg/L	2.5 mg/L	ND	75.0	125	
Anions and Nutr	ients (QCLot: 371380)									
CG2106832-002	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.498 mg/L	0.5 mg/L	99.5	75.0	125	
Aggregate Organ	nics (QCLot: 370570)									
CG2106834-008	Anonymous	chemical oxygen demand [COD]		E559-L	110 mg/L	100 mg/L	110	75.0	125	

ALS Environmental

ANALYTICAL CHEMISTRY & TESTING SERVICES

SEND REPORT TO:

www.alsenviro.com

Vancouver BC, 1988 Triumph Street, V5L 1K5, Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253-6700 Fort St. John BC, Box 256, 9831 - 98A Avenue, V1J 6W7, Tel: 250-261-5517 Fax: 250-261-5587 Grand Prairie AB, 9595 - 111 Street, T8V 5W1, Tel: 780-539-5196 Toli Free: 1-800-668-9878 Fax: 780-513-2191 Fort McMurray AB, Bay 1, 245 Macdonald Cr, T9H 4B5, Tel: 780-791-1524 Fax: 780-791-1586 Edmonton AB, 9936 - 67th Avenue, T6E 0P5, Tel: 780-413-5227 Toli Free: 1-800-668-9878 Fax: 780-437-2311 Calgary AB, Bay 7, 1313 - 44th Avenue NE, T2E 6L5, Tel: 403-291-9897 Toll Free: 1-800-668-9878 Fax: 403-291-0298 Saskatoon SK, 819 - 58th Street East, S7K 6X5, Tel: 306-668-8370 Toll Free: 1-800-667-7645 Fax: 306-668-8383

Environmental Division Calgary Work Order Reference 06829

1800

CHAIN OF	CUSTODY FORM

	NY:	FERNIE AL	PINE RESORT	UTILITIES CORPO	ON ATTN: PATRICK MAJER ANALYS					ALYSIS REQUESTED:													r ČG2			
		1505 - 17TH AVENUE SOUTH WEST																·	1							
CITY:	······································	CALGARY		PROV ALBER	TA	POSTAL CODE	T2T 0E2			. :		÷		1.									Ĩ			
EL:		403 - 256 - 8		 FAX: 403 - 2	44 - 3774	SAMPLER	Kevin Mackey	• •										1		· ·						
ROJEC	TNAME	AND NO.:	FARUC = Wint	ter EMS week 1 ····	•••••	QUOTE NO						<u>.</u>						· ·								
O NO .:		T	*	ALS CONTACT:	Patryk Woyciak		······							- · · · ·		· · · ·	• • • • •		+	· · · ·			• • • • •	旧称合		
		•••••	⊡ HAR		AIL - ADDRES	spmajer@skirc	x.com] : ₂ ,		107									İ	. • •			Telept	none:+14		
EPORI	TFORMA	T: ·	☐ FAX		PDF			Califorms		1												:			_	
Ņ	VO#		<u> </u>		DATE / TIME			-			60	<u>a</u>	Z	N.	N-1	. 90]			· NO	TES (sam	ple specific		
		S	AMPLE IDENTIF	FICATION	YYYY-MM-DD	TIME	MATRIX	Fecal	TSS	Ha	Ortho	Total	N-6HN	N-EON	NO2-N	BOD5	COD	-	1				comments, due dates, etc			
Τ	1	WWTP Influ	ent Routine		2021-12-15	10.30	Water	£	X	1												9.	300			
t.	\leq	WWTP Influ	ent BOD		2021-12-15	10:50	Water	1		1	1					х										
		WWTP Efflu	ent Routine		2021-12-15	10:40	Water		x	. x			1				X				5.	10.	2°C			
	7	WWTP Efflu	· · · · · · · · · · · · · · · · · · ·		2021-12-15	10:40	Water	1	1	1						х										
12	$\langle $	WWTP Effluent Nutrients			2021-12-15	10:40	Water				X	X	x	X	X	-				· •.						
	\mathbf{X}	WWTP Efflu	ent Bacteriolog	ical	2021-12-15	10:40	Water	X		1																
	7	Elk River Upstream Routine			2021-12-15	10.2	Water		X	X		·										0.0	4°C			
12	7	Elk River Upstream Nutrients			2021-12-15	10:50	Water	1			X	X	х	х	х											
P	\mathbf{X}	Elk River Upstream Bacteriological			2021-12-15	10:50	Water	X		10	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.						£.									
}	1	Elk River @	Elk River @ Outfall Routine			11:00	Water		X	X	1							-				0.	502			
1	$\langle $	Elk River @	Outfall Nutrient	ts	2021-12-15	11:00	Water				X	X	X	X ",	: X	P		1								
		Elk River @	Elk River @ Outfall Bacteriological Elk River Downstream Routine			11.00	Water	X																		
						11.10	Water		X	X											17	0.	500	<u> </u>		
-7		Elk River Do	wnstream Nutr	ients	2021-12-15	11:10	Water	1			X	x	X	X	X											
기		Elk River Do	winstream Bact	teriological	2021-12-15	11.90	water 🦾	X				4				¢.										
						an we have a state				<u> </u>	<u> </u>		 							<u> </u>	<u> </u>					
				· _ · · · · · · · · · · · · · · · · · ·		х Х				-											<u>, 1</u>					
		<u></u>				2 m al a co	1		1.1.1	+		-									<u></u>					
			3 5 5						<u> </u>					1 gas 1 1	ст. н. Ст. н.											
		<u> </u>				L	l		L		<u> </u>	L					<u>-</u>	0.21	12.15		EIVED	Ļ		1274		
IRN A		REQUIRED:	ROUTI	NE ORUSH	SPECIFY DATE:		(surcharge may apply)				INQUI ter Ba		BY:			ATE:					hp		TIME:	9:00		
					ovide details			-											EIVED		DATE:	1.00				
	FORMA						ANG Dergine			KEL		SHED	, 10-1							INE OI		DT.				
		<u> </u>		· · · · ·	—		-MAIL TO		<u> </u>	EO	R LA	BUS		Ji Y		EIME:	Ļ			Ļ			TIME:	70		
CIAL INSTRUCTIONS: PLEASE FAX A COPY OF THE RESULTS TO 250-423-4652 OR E-MAIL TO wasteiwater@skifernie.com										ler Sea				Samp	le Tei	mpera	ture:	. 1	°C	Cooli	ng Metho	od?:	57			
			-								Yes _				Froze					·	1	•	lce	None		

CERTIFICATE OF ANALYSIS

Work Order	: CG2107100	Page	: 1 of 3
Client	: Fernie Alpine Resort Utilities Corporation	Laboratory	: Calgary - Environmental
Contact	: Patrick Majer	Account Manager	: Patryk Wojciak
Address	: 1505 - 17TH AVENUE SW	Address	2559 29th Street NE
	Calgary AB Canada T2T 0E2		Calgary AB Canada T1Y 7B5
Telephone	: 403 254 7669	Telephone	: +1 403 407 1800
Project	: FARUC - WINTER EMS WEEK 2	Date Samples Received	: 23-Dec-2021 10:00
PO	:	Date Analysis Commenced	: 23-Dec-2021
C-O-C number	:	Issue Date	: 31-Dec-2021 10:33
Sampler	: KM		
Site	:		
Quote number	: CG21-FARU100-0002		
No. of samples received	: 5		
No. of samples analysed	: 5		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Erin Sanchez		Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Katarzyna Glinka	Analyst	Inorganics, Calgary, Alberta
Katarzyna Glinka	Analyst	Microbiology, Calgary, Alberta
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
CFU/100mL	colony forming units per 100 mL
mg/L	milligrams per litre
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
HTD	Hold time exceeded for re-analysis or dilution, but initial testing was conducted within hold time.

Analytical Results

Sub-Matrix: Water		C	lient sample ID	WWTP	WWTP	ELK RIVER	ELK RIVER @	ELK RIVER
(Matrix: Water)				INFLUENT	EFFLUENT	UPSTREAM	OUTFALL	DOWNSTREAM
		Client samp	oling date / time	22-Dec-2021 10:00	22-Dec-2021 10:05	22-Dec-2021 10:50	22-Dec-2021 11:00	22-Dec-2021 11:10
Analyte CAS Numb	er Method	LOR	Unit	CG2107100-001	CG2107100-002	CG2107100-003	CG2107100-004	CG2107100-005
				Result	Result	Result	Result	Result
Physical Tests								
pH -	E108	0.10	pH units	8.27	7.52	8.23	7.91	8.20
solids, total suspended [TSS]	E160-H	3.0	mg/L	218	<3.0	<3.0	<3.0	<3.0
Anions and Nutrients								
ammonia, total (as N) 7664-41	-7 E298	0.0050	mg/L		0.0469	0.0052	0.0127	<0.0050
nitrate (as N) 14797-55	-8 E235.NO3-L	0.0050	mg/L		40.9 HTD	1.50	13.4	1.50
nitrite (as N) 14797-65	-0 E235.NO2-L	0.0010	mg/L		2.10	0.0010	0.391	0.0013
phosphate, ortho-, dissolved (as P) 14265-44	-2 E378-U	0.0010	mg/L		0.369	0.0035	0.0690	0.0038
phosphorus, total 7723-14	-0 E372-U	0.0020	mg/L		0.440 DLHC	0.0048	0.0713	0.0049
nitrate + nitrite (as N)	EC235.N+N	0.0050	mg/L		43.0	1.50	13.8	1.50
Bacteriological Tests								
coliforms, thermotolerant [fecal]	E012.FC	1	CFU/100mL		41	5	27	3
Aggregate Organics								
biochemical oxygen demand [BOD]	E550	2.0	mg/L	266	<2.0			
chemical oxygen demand [COD]	E559-L	10	mg/L		16			

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: CG2107100	Page	: 1 of 9	
Client	: Fernie Alpine Resort Utilities Corporation	Laboratory	: Calgary - Environmental	
Contact	: Patrick Majer	Account Manager	: Patryk Wojciak	
Address	1505 - 17TH AVENUE SW	Address	2559 29th Street NE	
	Calgary AB Canada T2T 0E2		Calgary, Alberta Canada T1Y 7B5	
Telephone	403 254 7669	Telephone	: +1 403 407 1800	
Project	: FARUC - WINTER EMS WEEK 2	Date Samples Received	: 23-Dec-2021 10:00	
PO	:	Issue Date	: 31-Dec-2021 10:33	
C-O-C number	:			
Sampler	: KM			
Site	:			
Quote number	: CG21-FARU100-0002			
No. of samples received	:5			
No. of samples analysed	:5			

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- <u>No</u> Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- <u>No</u> Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• <u>No</u> Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers occur - please see following pages for full details.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Aatrix: Water					Εv	aluation: × =	Holding time exce	edance ; 🔹	<pre>< = Within</pre>	Holding Ti
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Biochemical Oxygen Demand - 5 day										
HDPE [BOD HT 3d]										
WWTP EFFLUENT	E550	22-Dec-2021					23-Dec-2021	3 days	1 days	1
Aggregate Organics : Biochemical Oxygen Demand - 5 day										
HDPE [BOD HT 3d]										
WWTP INFLUENT	E550	22-Dec-2021					23-Dec-2021	3 days	1 days	1
Aggregate Organics : Chemical Oxygen Demand by Colourimetry (Low Level)										
Amber glass total (sulfuric acid)										
WWTP EFFLUENT	E559-L	22-Dec-2021					29-Dec-2021	28 days	7 days	1
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)	E298	22-Dec-2021	23-Dec-2021				23-Dec-2021	00 dava	4	1
ELK RIVER @ OUTFALL	E298	22-Dec-2021	23-Dec-2021				23-Dec-2021	28 days	1 days	*
Anions and Nutrients : Ammonia by Fluorescence							1			
Amber glass total (sulfuric acid) ELK RIVER DOWNSTREAM	E298	22-Dec-2021	23-Dec-2021				23-Dec-2021	28 days	1 davs	1
	2200		20 200 2021					Lougo	1 duyo	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
ELK RIVER UPSTREAM	E298	22-Dec-2021	23-Dec-2021				23-Dec-2021	28 days	1 days	✓
								,		
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
WWTP EFFLUENT	E298	22-Dec-2021	23-Dec-2021				23-Dec-2021	28 days	1 days	✓
	1			1			1	1		

											Holding 7
Index and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Level) Rec Actual Rec Actual IOPE EX RIVER @ DUTFALL E378-U 22-Dee-2021		Method	Sampling Date	Ext					-		
Interview of the phosphate by Colourinetry (Ultra Trace Level) IDPE ELK RIVER @ OUTFALL E378-U 22-Dec-2021 23-Dec-2021 3 days 1 days IDPE ELK RIVER @ OUTFALL E378-U 22-Dec-2021 23-Dec-2021 3 days 1 days IDPE EIK RIVER @ OUTFALL E378-U 22-Dec-2021 23-Dec-2021 3 days 1 days IDPE EIK RIVER @ OUTFALL E378-U 22-Dec-2021 23-Dec-2021 3 days 1 days UMUPE EIK RIVER @ OUTFALL E378-U 22-Dec-2021 23-Dec-2021 3 days 1 days UMUPE EIX R	Container / Client Sample ID(s)			Preparation			Eval	Analysis Date	-		Eval
Import E378-U 22-Dec-2021 23-Dec-2021 3 days 1 days Incide and Nutringts : Dissolved Orthophosphate by Colouringtry (Ultra Trace Leve) E378-U 22-Dec-2021				Date	Rec	Actual			Rec	Actual	
ELK RIVER @ OUTFALL E378-U 22-0e-2021 23-0e-2021 3 days 1 days INDES and Nutrients - Dissolved Orthophosphate by Colourinetry (Ultra Trace Levitor E378-U 22-0e-2021 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		evel)									
Indices and Nutrients - Dissolved Orthophosphate by Colourinetry (Ultra Trace Level) Under Strate Under Strat											
LOPE E378-U 22-Dec-2021 23-Dec-2021 3 days 1 days LCK RIVER DOWNSTREAM E378-U 22-Dec-2021 23-Dec-2021 3 days 1 days LDPE ELK RIVER UPSTREAM E378-U 22-Dec-2021 23-Dec-2021 3 days 1 days LDPE ELK RIVER UPSTREAM E378-U 22-Dec-2021 23-Dec-2021 3 days 1 days MODE E378-U 22-Dec-2021 23-Dec-2021 3 days 1 days MOTE SETURENT E378-U 22-Dec-2021 23-Dec-2021 3 days 1 days MODE E12K RIVER @ OUTFALL E235 NO3-L 22-Dec-2021 23-Dec-2021 3 days 1 days MODE E12K RIVER @ OUTFALL E235 NO3-L 22-Dec-2021	ELK RIVER @ OUTFALL	E378-U	22-Dec-2021					23-Dec-2021	3 days	1 days	~
LOPE E378-U 22-Dec-2021 23-Dec-2021 3 days 1 days LCK RIVER DOWNSTREAM E378-U 22-Dec-2021 23-Dec-2021 3 days 1 days LDPE ELK RIVER UPSTREAM E378-U 22-Dec-2021 23-Dec-2021 3 days 1 days LDPE ELK RIVER UPSTREAM E378-U 22-Dec-2021 23-Dec-2021 3 days 1 days MODE E378-U 22-Dec-2021 23-Dec-2021 3 days 1 days MOTE SETURENT E378-U 22-Dec-2021 23-Dec-2021 3 days 1 days MODE E12K RIVER @ OUTFALL E235 NO3-L 22-Dec-2021 23-Dec-2021 3 days 1 days MODE E12K RIVER @ OUTFALL E235 NO3-L 22-Dec-2021											
ELK RIVER DOWNSTREAM E378-U 22-Dec-2021 23-Dec-2021 3 day 1 days NODE ELK RIVER DOWNSTREAM E378-U 22-Dec-2021 23-Dec-2021 3 days 1 days NODE ELK RIVER UPSTREAM E378-U 22-Dec-2021		evel)									
Index Index <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>											
IDPE ELK RIVER UPSTREAM E378-U 22-Dec-2021 R 23-Dec-2021 3 days 1 days Inions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Leve) E378-U 22-Dec-2021 R 23-Dec-2021 3 days 1 days	ELK RIVER DOWNSTREAM	E378-U	22-Dec-2021					23-Dec-2021	3 days	1 days	~
IDPE ELK RIVER UPSTREAM E378-U 22-Dec-2021 R 23-Dec-2021 3 days 1 days Inions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Leve) E378-U 22-Dec-2021 R 23-Dec-2021 3 days 1 days											
ELK RIVER UPSTREAM E378-U 22-Dec-2021 L 23-Dec-2021 3 days 1 days IDPE WYTP EFFLUENT E378-U 22-Dec-2021 23-Dec-2021 3 days 1 days	nions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace L	evel)									
Initian and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Love)) Earse Love) Initian and Nutrients : Nitrate in Water by IC (Low Level) Earse Lowe Initian and Nutrients : Nitrate in Water by IC (Low Level) Idays											
HDPE WWTP EFFLUENT E378-U 22-Dec-2021 23-Dec-2021 3 days 1 days HOPE LIX RIVER @ OUTFALL E235.N03-L 22-Dec-2021 23-Dec-2021 3 days 1 days HOPE ELX RIVER @ OUTFALL E235.N03-L 22-Dec-2021 23-Dec-2021 3 days 1 days	ELK RIVER UPSTREAM	E378-U	22-Dec-2021					23-Dec-2021	3 days	1 days	~
HDPE WWTP EFFLUENT E378-U 22-Dec-2021 23-Dec-2021 3 days 1 days HOPE LIX RIVER @ OUTFALL E235.N03-L 22-Dec-2021 23-Dec-2021 3 days 1 days HOPE ELX RIVER @ OUTFALL E235.N03-L 22-Dec-2021 23-Dec-2021 3 days 1 days											
WWTP EFFLUENT E378-U 22-Dec-2021 23-Dec-2021 3 days 1 days Nons and Nutrients : Nitrate in Water by IC (Low Level) E235.NO3-L 22-Dec-2021 23-Dec-2021 3 days 1 days HOPE ELK RIVER @ OUTFALL E235.NO3-L 22-Dec-2021 23-Dec-2021 3 days 1 days HOPE ELK RIVER @ OUTFALL E235.NO3-L 22-Dec-2021 23-Dec-2021 3 days 1 days HOPE ELK RIVER DOWNSTREAM E235.NO3-L 22-Dec-2021 3 days 1 days HOPE ELK RIVER DOWNSTREAM E235.NO3-L 22-Dec-2021 3 days 1 days HOPE ELK RIVER UPSTREAM E235.NO3-L 22-Dec-2021 3 days 5 days HOPE WWTP EFFLUENT E235.NO3-L	nions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace L	evel)									
Initial and Nutrients : Nitrate in Water by IC (Low Level) Image: Nitrate in Water by IC (Low Level) Ima											
IDPE ELK RIVER @ OUTFALLE235.NO3-L22-Dec-2021Image: Second sec	WWTP EFFLUENT	E378-U	22-Dec-2021					23-Dec-2021	3 days	1 days	~
IDPE ELK RIVER @ OUTFALLE235.NO3-L22-Dec-2021Image: Second sec											
ELK RIVER @ OUTFALLE235.NO3-L22-Dec-202123-Dec-20213 days1 daysInitiation Mater by IC (Low Level)HDPEELK RIVER DOWNSTREAME235.NO3-L22-Dec-202123-Dec-20213 days1 daysInitiation Mater by IC (Low Level)HDPEELK RIVER UPSTREAME235.NO3-L22-Dec-2021Image: Comparison of the c	nions and Nutrients : Nitrate in Water by IC (Low Level)										
List of the l											
IDPE ELK RIVER DOWNSTREAME235.NO3-L22-Dec-202123-Dec-20213 days1 daysINIDE RIVER UPSTREAMState by IC (Low Level)E235.NO3-L22-Dec-2021Image: State by IC (Low Level)3 days1 daysINIDE BLK RIVER UPSTREAME235.NO3-L22-Dec-2021Image: State by IC (Low Level)3 days1 daysINIDE WWTP EFFLUENTE235.NO3-L22-Dec-2021Image: State by IC (Low Level)Image: State by IC (Low Level)INIDE HOPE HOPEImage: State by IC (Low Level)E235.NO3-L22-Dec-2021Image: State by IC (Low Level)Image: State by IC (Low Level)INIDE HOPEImage: State by IC (Low Level)Image: State by IC (Low Level)Image: State by IC (Low Level)Image: State by IC (Low Level)INIDE HOPEImage: State by IC (Low Level)Image: State by IC (Low Level)Image: State by IC (Low Level)Image: State by IC (Low Level)INIDE HOPEImage: State by IC (Low Level)Image: State by IC (Low Level)Image: State by IC (Low Level)Image: State by IC (Low Level)INIDE HOPEImage: State by IC (Low Level)Image: State by IC (Low Level)Image: State by IC (Low Level)Image: State by IC (Low Level)INIDE HOPEImage: State by IC (Low Level)Image: State by IC (Low Level)Image: State by IC (Low Level)Image: State by IC (Low Level)INIDEImage: State by IC (Low Level)Image: State by	ELK RIVER @ OUTFALL	E235.NO3-L	22-Dec-2021					23-Dec-2021	3 days	1 days	~
IDPE ELK RIVER DOWNSTREAME235.NO3-L22-Dec-202123-Dec-20213 days1 daysINIDE RIVER UPSTREAMState by IC (Low Level)E235.NO3-L22-Dec-2021Image: State by IC (Low Level)3 days1 daysINIDE BLK RIVER UPSTREAME235.NO3-L22-Dec-2021Image: State by IC (Low Level)3 days1 daysINIDE WWTP EFFLUENTE235.NO3-L22-Dec-2021Image: State by IC (Low Level)Image: State by IC (Low Level)INIDE HOPE HOPEImage: State by IC (Low Level)E235.NO3-L22-Dec-2021Image: State by IC (Low Level)Image: State by IC (Low Level)INIDE HOPEImage: State by IC (Low Level)Image: State by IC (Low Level)Image: State by IC (Low Level)Image: State by IC (Low Level)INIDE HOPEImage: State by IC (Low Level)Image: State by IC (Low Level)Image: State by IC (Low Level)Image: State by IC (Low Level)INIDE HOPEImage: State by IC (Low Level)Image: State by IC (Low Level)Image: State by IC (Low Level)Image: State by IC (Low Level)INIDE HOPEImage: State by IC (Low Level)Image: State by IC (Low Level)Image: State by IC (Low Level)Image: State by IC (Low Level)INIDE HOPEImage: State by IC (Low Level)Image: State by IC (Low Level)Image: State by IC (Low Level)Image: State by IC (Low Level)INIDEImage: State by IC (Low Level)Image: State by											
ELK RIVER DOWNSTREAM E235.NO3-L 22-Dec-2021 23-Dec-2021 3 days 1 days 1 days 1 days hions and Nutrients : Nitrate in Water by IC (Low Level) E235.NO3-L 22-Dec-2021 Image: Since and											
$\frac{1}{1000} = \frac{1}{1000} = 1$											
IDPE ELK RIVER UPSTREAME235.NO3-L22-Dec-202123-Dec-20213 days1 days✓nions and Nutrients : Nitrate in Water by IC (Low Level)IDPE WWTP EFFLUENTE235.NO3-L22-Dec-202127-Dec-20213 days5 days * EHTnions and Nutrients : Nitrite in Water by IC (Low Level)E235.NO3-L22-Dec-202127-Dec-20213 days5 days * EHTnions and Nutrients : Nitrite in Water by IC (Low Level)E235.NO3-LE235.NO3-LEEEEEEEEEE	ELK RIVER DOWNSTREAM	E235.NO3-L	22-Dec-2021					23-Dec-2021	3 days	1 days	~
IDPE ELK RIVER UPSTREAME235.NO3-L22-Dec-202123-Dec-20213 days1 days✓nions and Nutrients : Nitrate in Water by IC (Low Level)IDPE WWTP EFFLUENTE235.NO3-L22-Dec-202127-Dec-20213 days5 days * EHTnions and Nutrients : Nitrite in Water by IC (Low Level)E235.NO3-L22-Dec-202127-Dec-20213 days5 days * EHTnions and Nutrients : Nitrite in Water by IC (Low Level)E235.NO3-LE235.NO3-LEEEEEEEEEE											
ELK RIVER UPSTREAM E235.NO3-L 22-Dec-2021 23-Dec-2021 3 days 1 days ✓ hions and Nutrients : Nitrate in Water by IC (Low Level) E235.NO3-L 22-Dec-2021 E235.NO3-L 22-Dec-2021 E235.NO3-L S days 1 days ✓ HOPE WWTP EFFLUENT E235.NO3-L 22-Dec-2021 E235.NO3-L S days 5 days E4 hions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO3-L 22-Dec-2021 E235.NO3-L S days 5 days E4 hions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO3-L E10 E10 E10 E10 E10 E10 E11	nions and Nutrients : Nitrate in Water by IC (Low Level)										
ALCON LINE OF CONVENIENT. TO CONVENIENT OF CONVENIENT OF CONVENIENT OF CONVENIENT OF CONVENIENT OF CONVENIENT OF CONVENIENT OF CONVENIENT. TO CONVENIENT OF CONVENIENT OF CONVENIENT OF CONVENIENT OF CONVENIENT OF CONVENIENT OF CONVENIENT. TO CONVENIENT OF CONVENIENT OF CONVENIENT OF CONVENIENT OF CONVENIENT OF CONVENIENT OF CONVENIENT OF CONVENT. TO CONVENT OF CONVENT TO CONVENT OF CONVENT. TO C											
IDPE E235.NO3-L 22-Dec-2021 27-Dec-2021 3 days 5 days # EHT Nions and Nutrients : Nitrite in Water by IC (Low Level) EHT IDPE Image: State of the state of th	ELK RIVER UPSTREAM	E235.NO3-L	22-Dec-2021					23-Dec-2021	3 days	1 days	~
IDPE E235.NO3-L 22-Dec-2021 27-Dec-2021 3 days 5 days # EHT Nions and Nutrients : Nitrite in Water by IC (Low Level) EHT IDPE Image: State of the state of th											
WWTP EFFLUENT E235.NO3-L 22-Dec-2021 27-Dec-2021 3 days 5 days * nions and Nutrients : Nitrite in Water by IC (Low Level) 27-Dec-2021 3 days 5 days * EHT HDPE Image: Compare the second s											
hions and Nutrients : Nitrite in Water by IC (Low Level) HDPE											
hions and Nutrients : Nitrite in Water by IC (Low Level) HDPE	WWTP EFFLUENT	E235.NO3-L	22-Dec-2021					27-Dec-2021	3 days	5 days	
IDPE											EHI
ELK RIVER @ OUTFALL E235.NO2-L 22-Dec-2021 23-Dec-2021 3 days 1 days ✓											
	ELK RIVER @ OUTFALL	E235.NO2-L	22-Dec-2021					23-Dec-2021	3 days	1 days	~

							Holding time exce			riolung i
Analyte Group	Method	Sampling Date		traction / Pr				Analys		
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
nions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE ELK RIVER DOWNSTREAM	E235.NO2-L	22-Dec-2021					23-Dec-2021	3 days	1 days	~
nions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE ELK RIVER UPSTREAM	E235.NO2-L	22-Dec-2021					23-Dec-2021	3 days	1 days	*
nions and Nutrients : Nitrite in Water by IC (Low Level)							1			
HDPE WWTP EFFLUENT	E235.NO2-L	22-Dec-2021					23-Dec-2021	3 days	1 days	1
nions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid) ELK RIVER @ OUTFALL	E372-U	22-Dec-2021	28-Dec-2021				28-Dec-2021	28 days	6 days	4
nions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)							1			
Amber glass total (sulfuric acid) ELK RIVER DOWNSTREAM	E372-U	22-Dec-2021	28-Dec-2021				28-Dec-2021	28 days	6 days	4
nions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid) ELK RIVER UPSTREAM	E372-U	22-Dec-2021	28-Dec-2021				28-Dec-2021	28 days	6 days	1
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid) WWTP EFFLUENT	E372-U	22-Dec-2021	28-Dec-2021				28-Dec-2021	28 days	6 days	1
Bacteriological Tests : Thermotolerant (Fecal) Coliform (MF-mFC)										
Sterile HDPE (Sodium thiosulphate) ELK RIVER DOWNSTREAM	E012.FC	22-Dec-2021					23-Dec-2021	30 hrs	24 hrs	1
Bacteriological Tests : Thermotolerant (Fecal) Coliform (MF-mFC)								1		
Sterile HDPE (Sodium thiosulphate) ELK RIVER @ OUTFALL	E012.FC	22-Dec-2021					23-Dec-2021	30 hrs	25 hrs	1

Page	5 of 9
Work Order	2 CG2107100
Client	: Fernie Alpine Resort Utilities Corporation
Project	: FARUC - WINTER EMS WEEK 2

atrix: Water			-				Holding time exce			
nalyte Group	Method	Sampling Date		traction / Pr				Analys		
Container / Client Sample ID(s)			Preparation		g Times	Eval	Analysis Date	-	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
acteriological Tests : Thermotolerant (Fecal) Coliform (MF-mFC)										
Sterile HDPE (Sodium thiosulphate)										
ELK RIVER UPSTREAM	E012.FC	22-Dec-2021					23-Dec-2021	30 hrs	25 hrs	×
acteriological Tests : Thermotolerant (Fecal) Coliform (MF-mFC)										
Sterile HDPE (Sodium thiosulphate)										
WWTP EFFLUENT	E012.FC	22-Dec-2021					23-Dec-2021	30 hrs	25 hrs	 ✓
hysical Tests : pH by Meter										
HDPE										
ELK RIVER @ OUTFALL	E108	22-Dec-2021					23-Dec-2021	0.25	25 hrs	×
								hrs		EHTR-FI
hysical Tests : pH by Meter										
HDPE										
ELK RIVER DOWNSTREAM	E108	22-Dec-2021					23-Dec-2021	0.25	25 hrs	32
								hrs		EHTR-FI
hysical Tests : pH by Meter										
HDPE										
ELK RIVER UPSTREAM	E108	22-Dec-2021					23-Dec-2021	0.25	25 hrs	×
								hrs		EHTR-FI
hysical Tests : pH by Meter									1	
HDPE										
WWTP EFFLUENT	E108	22-Dec-2021					23-Dec-2021	0.25	26 hrs	×
								hrs		EHTR-F
hysical Tests : pH by Meter										
HDPE										
WWTP INFLUENT	E108	22-Dec-2021					23-Dec-2021	0.25	26 hrs	×
								hrs		EHTR-F
hysical Tests : TSS by Gravimetry							1			
HDPE										
ELK RIVER @ OUTFALL	E160-H	22-Dec-2021					28-Dec-2021	7 days	6 days	1
	210011							,0	5 22,0	
hysical Tests : TSS by Gravimetry HDPE										
ELK RIVER DOWNSTREAM	E160-H	22-Dec-2021					28-Dec-2021	7 days	6 days	1
		22-000-2021					20-060-2021	1 uays	Juays	T

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; v	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TSS by Gravimetry										
HDPE ELK RIVER UPSTREAM	E160-H	22-Dec-2021					28-Dec-2021	7 days	6 days	✓
Physical Tests : TSS by Gravimetry										
HDPE WWTP EFFLUENT	E160-H	22-Dec-2021					28-Dec-2021	7 days	6 days	~
Physical Tests : TSS by Gravimetry										
HDPE WWTP INFLUENT	E160-H	22-Dec-2021					28-Dec-2021	7 days	6 days	4

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water Quality Control Sample Type			on: × = QC freque	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)					, 1010101		
Ammonia by Fluorescence	E298	375858	1	20	5.0	5.0	1
Biochemical Oxygen Demand - 5 day	E550	375846	1	20	5.0	5.0	 ✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	377588	0	18	0.0	5.0	• *
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	375727	0	11	0.0	5.0	× ×
Nitrate in Water by IC (Low Level)	E235.NO3-L	376158	0	11	0.0	5.0	<u>x</u>
Nitrite in Water by IC (Low Level)	E235.NO2-L	376159	0	10	0.0	5.0	 x
pH by Meter	E108	375670	0	8	0.0	5.0	<u>x</u>
Thermotolerant (Fecal) Coliform (MF-mFC)	E012.FC	377800	1	17	5.8	5.0	
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	376766	1	18	5.5	5.0	
TSS by Gravimetry	E160-H	376809	1	20	5.0	5.0	
Laboratory Control Samples (LCS)			· ·				¥
Ammonia by Fluorescence	E298	375858	1	20	5.0	5.0	1
Biochemical Oxygen Demand - 5 day	E550	375846	1	20	5.0	5.0	 ✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	377588	1	18	5.5	5.0	 ✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	375727	1	11	9.0	5.0	 ✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	376158	1	11	9.0	5.0	 ✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	376159	1	10	10.0	5.0	
pH by Meter	E108	375670	1	8	12.5	5.0	 ✓
Total Phosphorus by Colourimetry (Ultra Trace)	E 100	376766	1	18	5.5	5.0	 ✓
TSS by Gravimetry	E160-H	376809	1	20	5.0	5.0	
Method Blanks (MB)		0.0000		20	0.0	0.0	•
Ammonia by Fluorescence	E298	375858	1	20	5.0	5.0	✓
Biochemical Oxygen Demand - 5 day	E550	375846	1	20	5.0	5.0	 ✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	377588	1	18	5.5	5.0	 ✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	375727	1	11	9.0	5.0	 ✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	376158	1	11	9.0	5.0	 ✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	376159	1	10	10.0	5.0	 ✓
Thermotolerant (Fecal) Coliform (MF-mFC)	E012.FC	377800	1	17	5.8	5.0	
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	376766	1	18	5.5	5.0	
TSS by Gravimetry	E160-H	376809	1	20	5.0	5.0	
Matrix Spikes (MS)			· ·		5.0	5.0	¥
Ammonia by Fluorescence	E298	375858	1	20	5.0	5.0	✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	377588	1	18	5.5	5.0	 ✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E339-L E378-U	375727	0	11	0.0	5.0	 ۲
Nitrate in Water by IC (Low Level)	E235.NO3-L	376158	1	11	9.0	5.0	×
Nitrite in Water by IC (Low Level)	E235.NO3-L	376159	1	10	10.0	5.0	 ✓
Total Phosphorus by Colourimetry (Ultra Trace)	E235.NO2-L E372-U	376766	1	18	5.5	5.0	√

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Thermotolerant (Fecal) Coliform (MF-mFC)	E012.FC Calgary - Environmental	Water	APHA 9222 D (mod)	Following filtration (0.45 μ m), and incubation at 44.5 \pm 0.2°C for 22-26 hours, colonies exhibiting characteristic morphology of the target organism are enumerated and confirmed.
pH by Meter	E108 Calgary - Environmental	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
TSS by Gravimetry	E160-H Calgary - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
Nitrite in Water by IC (Low Level)	E235.NO2-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U Calgary - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a flow analyzer on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Biochemical Oxygen Demand - 5 day	E550 Calgary - Environmental	Water	APHA 5210 B (mod)	Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Free chlorine is a negative interference in the BOD method; please advise ALS when free chlorine is present in samples.
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L Calgary - Environmental	Water	APHA 5220 D (mod)	Samples are analyzed using the closed reflux colourimetric method.
Nitrate and Nitrite (as N) (Calculation)	EC235.N+N Calgary - Environmental	Water	EPA 300.0	Nitrate and Nitrite (as N) is a calculated parameter. Nitrate and Nitrite (as N) = Nitrite (as N) + Nitrate (as N).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions

Page	: 9 of 9
Work Order	: CG2107100
Client	: Fernie Alpine Resort Utilities Corporation
Project	: FARUC - WINTER EMS WEEK 2

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
	Calgary - Environmental			
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	Calgary - Environmental			

QUALITY CONTROL REPORT

Work Order	CG2107100	Page	: 1 of 5
Client	Fernie Alpine Resort Utilities Corporation	Laboratory	: Calgary - Environmental
Contact	Patrick Majer	Account Manager	: Patryk Wojciak
Address	: 1505 - 17TH AVENUE SW	Address	2559 29th Street NE
Telephone	Calgary AB Canada T2T 0E2 : 403 254 7669	Telephone	Calgary, Alberta Canada T1Y 7B5 :+1 403 407 1800
Project	: FARUC - WINTER EMS WEEK 2	Date Samples Received	: 23-Dec-2021 10:00
PO	:	Date Analysis Commenced	:23-Dec-2021
C-O-C number	:	Issue Date	: 31-Dec-2021 10:33
Sampler	: KM		
Site	:		
Quote number	:CG21-FARU100-0002		
No. of samples received	: 5		
No. of samples analysed	: 5		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Erin Sanchez		Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Katarzyna Glinka	Analyst	Inorganics, Calgary, Alberta
Katarzyna Glinka	Analyst	Microbiology, Calgary, Alberta
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

- Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.
- CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.
- DQO = Data Quality Objective.
- LOR = Limit of Reporting (detection limit).
- RPD = Relative Percentage Difference
- # = Indicates a QC result that did not meet the ALS DQO.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 376809)										
FC2101477-003	Anonymous	solids, total suspended [TSS]		E160-H	3.0	mg/L	64.7	59.1	9.05%	20%	
Anions and Nutrient	s (QC Lot: 375858)										
CG2107100-002	WWTP EFFLUENT	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0469	0.0461	0.0008	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 376766)										
CG2107087-003	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0205	0.0180	0.0025	Diff <2x LOR	
Bacteriological Test	s (QC Lot: 377800)										
CG2107100-003	ELK RIVER UPSTREAM	coliforms, thermotolerant [fecal]		E012.FC	1	CFU/100mL	5	3	50.0%	65%	
Aggregate Organics	(QC Lot: 375846)										
CG2107074-002	Anonymous	biochemical oxygen demand [BOD]		E550	2.0	mg/L	<2.0	<2.0	0.0%	30%	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 376809)						
solids, total suspended [TSS]		E160-H	3	mg/L	<3.0	
Anions and Nutrients (QCLot: 375727)						
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 375858)						
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 376158)						
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 376159)						
nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 376766)						
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020	
Bacteriological Tests (QCLot: 377800)						
coliforms, thermotolerant [fecal]		E012.FC	1	CFU/100mL	<1	
Aggregate Organics (QCLot: 375846)						
biochemical oxygen demand [BOD]		E550	2	mg/L	<2.0	
Aggregate Organics (QCLot: 377588)						
chemical oxygen demand [COD]		E559-L	10	mg/L	<10	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water	Laboratory Control Sample (LCS) Report											
					Spike	Recovery (%)	Recovery	Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Physical Tests (QCLot: 375670)												
рН		E108		pH units	7 pH units	99.7	98.6	101				
Physical Tests (QCLot: 376809)												
solids, total suspended [TSS]		Е160-Н	3	mg/L	150 mg/L	96.7	85.0	115				
Anions and Nutrients (QCLot: 375727)						1						
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.02 mg/L	97.0	80.0	120				
Anions and Nutrients (QCLot: 375858)												
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	104	85.0	115				
Anions and Nutrients (QCLot: 376158)												
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	96.4	90.0	110				
Anions and Nutrients (QCLot: 376159)												
nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	97.5	90.0	110				
Anions and Nutrients (QCLot: 376766)												
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	8.02 mg/L	97.6	80.0	120				
Aggregate Organics (QCLot: 375846)												
biochemical oxygen demand [BOD]		E550	2	mg/L	198 mg/L	89.7	85.0	115				
Aggregate Organics (QCLot: 377588)												
chemical oxygen demand [COD]		E559-L	10	mg/L	100 mg/L	107	85.0	115				

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Sp	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Anions and Nutr	ients (QCLot: 375858)									
CG2107100-003	ELK RIVER UPSTREAM	ammonia, total (as N)	7664-41-7	E298	0.101 mg/L	0.1 mg/L	101	75.0	125	
Anions and Nutr	ients (QCLot: 376158)									
CG2107087-005	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	2.32 mg/L	2.5 mg/L	92.6	75.0	125	
Anions and Nutr	ients (QCLot: 376159)									
CG2107087-005	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.469 mg/L	0.5 mg/L	93.8	75.0	125	
Anions and Nutr	ients (QCLot: 376766)									
CG2107087-004	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0581 mg/L	0.0676 mg/L	85.9	70.0	130	
Aggregate Orgai	nics (QCLot: 377588)									
CG2107087-004	Anonymous	chemical oxygen demand [COD]		E559-L	104 mg/L	100 mg/L	104	75.0	125	

ALS Environmental

ANALYTICAL CHEMISTRY & TESTING SERVICES

SEND REPORT TO:

www.alsenviro.com

Vancouver BC, 1988 Triumph Street, V5L 1K5. Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253-6700 Fort St. John BC, Box 256, 9831 - 98A Avenue, V1J 6W7, Tel: 250-261-5517 Fax: 250-261-5587 Grand Prairie AB, 9595 - 111 Street, T8V 5W1, Tel: 780-539-5196 Toll Free: 1-800-668-9878 Fax: 780-513-2191 Fort McMurray AB, Bay 1, 245 Macdonald Cr, T9H 4B5, Tel: 780-791-1524 Fax: 780-791-1586 Edmonton AB, 9936 - 67th Avenue, T6E 0P5, Tel: 780-413-5227 Toll Free: 1-800-668-9878 Fax: 780-437-2311 Calgary AB, Bay 7, 1313 - 44th Avenue NE, T2E 6L5, Tel: 403-291-9897 Toll Free: 1-800-668-9878 Fax: 306-668-8383 Saskatoon SK, 819 - 58th Street East, S7K 6X5, Tel: 306-668-8370 Toll Free: 1-800-667-7645 Fax: 306-668-8383

CHAIN OF CUSTODY FORM

co	MPANY:	FERNIE A	RNIE ALPINE RESORT UTILITIES CORPORATION				PATRICK MAJER		_		-	_	_									PAGE	OF
ADI	DRESS		HAVENUE S				P ATRICK MAJER	R ANALYSIS REQUESTED:															
СІТ		CALGAR		PROV ALB	ERTA		T2T 0E2			1			-					a '					
TEL		403 - 256	- 8473		- 244 - 3774	POSTAL CODE	Kevin Mackey		•														
PRO	JECT NAME /	AND NO.:	FARUC - W	/inter EMS week 2			1				,	ŀ										•	
	NO.:	1			T: Patryk Woycia		8											.					
						ss <u>pmajer@skir</u>												(· ·					
REP	ORT FORMAT	T:	1 _		MAIL ~ ADURE	55							·[÷.					ĺ				
┣	WO#	1				OTHER:	<u> </u>	Coliform															
			SAMPLE IDEN	TIFICATION		E COLLECTED	MATRIX		5	1	d of	. d.	Z	Z.	N-2	22						NOTES (sar	
			uent Routine		YYYY-MM-DD	-		Fecal	TSS	Ha	Ortho	Total	N-CHN	NO3-N	NO2-N	BOD5	COD					comments, du	e dates, etc.)
		WWTP Infi	5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -		2021-12-22	10.00	Water		X	X	1"				1							95	
			uent Routine		2021-12-22	10:00	Water									х							
	<u> </u>	WWTP Eff	A		2021-12-22	10:05	Water		X	X			8				x					10.4	
			uent Nutrients		2021-12-22	10:05	Water									X			_				<u> </u>
			uent Bacteriolo	<u> </u>	2021-12-22	10:05	Water				Х	Х	X	x	X					_	-		
			pstream Routin		2021-12-22	10:05	Water	X					•										
7			ostream Nutrie	<u> </u>	2021-12-22	10:50	Water		X	X				· ·						_			
ONLY			ostream Bacte		2021-12-22	10:50	Water				Х	X	Х	Χ.	x	-						0,40	-
щ					2021-12-22	10.50	Water	X					-1		•			~					·
LAB USE			Outfall Routin Outfall Nutrier		2021-12-22	11:00	Water		X	_x	. T	- I	Ī	- 1								6-5°C	
3					2021-12-22	(1:00)	Water			1	I	Env	/iron	mer	ntal	Divi	SIO	1		-		0.2	
RGF	1.00		Outfall Bacter		2021-12-22	11:00	Water	X				Cal	gar	/ Orde	r Re	feren	се						
۳ I		· · · ·	wnstream Rou		2021-12-22	11:10	Water		: X	X		Ĭ		32	10	^{feren}	0	0	Π			0.5%	
- -			wnstream Nut		2021-12-22	11:10	Water					,		<u>, </u>	· v		-		1	+	+	0.3	
⊦			wnstream Bac	cteriological	2021-12-22	11:10	Water	X	-			I	- 11	11.7	U.J.	il.		1					
-			7		<u> </u>											<u>.</u>		 	1	_	-+-		
														ťΥ	h.				Ī	-+	-+-		
. -										1				ųΥ	117	11				-+-			
	· · · · · · · · · · · · · · · · · · ·	· · · · ·		>								Tel	ephon	ə:+1	403 40	0 7 18 00)		T.			<u> </u>	
			·							1		101						1	+				
URN	AROUND REC	QUIRED:	ROUTI	INE O RUSH	SPECIFY DATE:	(surcharge may apply)		- F	RELIN	QUISH	HED E	3Ý:		DA	TE	20:	21-12-	22			DATE	15/105
END	INVOICE TO:									Barre				TIN			11:		ゔ゙゙゙゙゙゙゙゚				
· · · · ·	E FORMAT:					vide details		R	RELIŃ	QUISH	IED E	BY:		DA				R	ECEN	/ED B)			
	AL INSTRUCT								_ [TIN							TIME:	
04		CTIONS: PLEASE FAX A COPY OF THE RESULTS TO 250-423-2 wastewater@skifernie.com					MAIL TO		F	OR	LAB	USE	ONL	Y				11:	2				
									c		Seal I					Temp		e.[[0)c	C	Cooling Method?		
						~				Yes	s	NO -	N//	Fr	ozen?	۲۲	′es _	_No-			_icepa	ckslce	None

G:/QUALITY/00_DOCUMENTS/10_AUTHORIZED/FORMS/CoC for ALS EMS.xts

CERTIFICATE OF ANALYSIS

Work Order	CG2107254	Page	÷ 1 of 4
Client	EFernie Alpine Resort Utilities	Laboratory	Calgary - Environmental
Contact	: Patrick Majer	Account Manager	:Patryk Wojciak
Address	: 1505 - 17TH AVENUE SW Calgary AB Canada T2T 0E2	Address	2559 29th Street NE Calgary AB Canada T1Y 7B5
Telephone	: 403 254 7669	Telephone	: +1 403 407 1800
Project	: FARUC WINTER EMS WEEK 3	Date Samples Received	: 30-Dec-2021 08:50
PO	:	Date Analysis Commenced	: 30-Dec-2021
C-O-C number	:	Issue Date	: 07-Jan-2022 13:28
Sampler	: Kevin Mackey		
Site	:		
Quote number	: CG21-FARU100-0002		
No. of samples received	: 5		
No. of samples analysed	: 4		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Erin Sanchez		Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Microbiology, Calgary, Alberta
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Sunil Palak		Inorganics, Calgary, Alberta
Vladka Stamenova	Analyst	Inorganics, Calgary, Alberta

General Comments

for analysis.

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance. Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
CFU/100mL	colony forming units per 100 mL
mg/L	milligrams per litre
pH units	pH units

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Workorder Comments

We did not received sample (fraction5) as client didn't send, unsafety reason

Qualifiers

Qualifier	Description
BODP	BOD dilution results differed by more than 30% RPD. Precision of reported BOD result may be less than usual.
BODQ	BOD Qualification: Lab Control Sample outside standard 85-115% objective (see QC report).
	Sample(s) cannot be rerun due to hold time expiry.
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).

<: less than.

Analytical Results

CG2107254-001									
Sub-Matrix:Water		Client sam	ple ID: WW	TP INFLUENT\					
(Matrix: Water)	Client sampling date / time: 29-Dec-2021 09:45								
Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot	
Physical Tests									
рН		8.28	0.10	pH units	E108	30-Dec-2021	30-Dec-2021	378696	
solids, total suspended [TSS]		259	3.0	mg/L	E160-H	-	02-Jan-2022	378397	
Aggregate Organics									
biochemical oxygen demand [BOD]		219 BODP, BODQ,	75.0	mg/L	E550	-	30-Dec-2021	378779	
Please refer to the General Comments section	for an explanation of any	qualifiers detect	ed.	·					

Analytical Results

CG2107254-002

	 	100	1.1.11		
(Matrix: Water)	Client sam	pling date / t	<i>ime:</i> 29-Dec-2	021 10:00	
Sub-Matrix:Water	Client sam	ple ID: WWT	P EFFLUENT		

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
рН		8.05	0.10	pH units	E108	30-Dec-2021	30-Dec-2021	378696
solids, total suspended [TSS]		3.1	3.0	mg/L	E160-H	-	02-Jan-2022	378397
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	0.913	0.0250	mg/L	E298	30-Dec-2021	30-Dec-2021	378433
nitrate (as N)	14797-55-8	34.2	0.0250	mg/L	E235.NO3-L	30-Dec-2021	30-Dec-2021	378574
nitrite (as N)	14797-65-0	0.419	0.0050	mg/L	E235.NO2-L	30-Dec-2021	30-Dec-2021	378573
phosphate, ortho-, dissolved (as P)	14265-44-2	0.305	0.0100	mg/L	E378-U	30-Dec-2021	30-Dec-2021	378454
phosphorus, total	7723-14-0	0.310 DLHC,	0.0100	mg/L	E372-U	31-Dec-2021	31-Dec-2021	378657
nitrate + nitrite (as N)		34.6	0.0255	mg/L	EC235.N+N	-	03-Jan-2022	-
Bacteriological Tests								
coliforms, thermotolerant [fecal]		25	1	CFU/100mL	E012.FC	-	31-Dec-2021	379452
Aggregate Organics								
biochemical oxygen demand [BOD]		<2.0	2.0	mg/L	E550	-	30-Dec-2021	378779
chemical oxygen demand [COD]		26	10	mg/L	E559-L	-	04-Jan-2022	380352

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

CG2107254-003 Sub-Matrix:Water

Client sample ID: ELK RIVER UPSTREAM Client sampling date / time: 29-Dec-2021 10:30

(Matrix: Water) Analyte Result LOR Unit Method Prep Date QCLot CAS Number Analysis Date Physical Tests рΗ 8.40 0.10 pH units E108 30-Dec-2021 30-Dec-2021 378696 ---solids, total suspended [TSS] <3.0 3.0 mg/L E160-H -02-Jan-2022 378397 ____ Anions and Nutrients ammonia, total (as N) 0.0216 0.0050 E298 30-Dec-2021 7664-41-7 mg/L 30-Dec-2021 378433 1.69 0.0050 E235.NO3-L 30-Dec-2021 nitrate (as N) mg/L 14797-55-8 30-Dec-2021 378574 nitrite (as N) 0.0031 0.0010 mg/L E235.NO2-L 30-Dec-2021 14797-65-0 30-Dec-2021 378573 0.0022 0.0010 E378-U phosphate, ortho-, dissolved (as P) 14265-44-2 mg/L 30-Dec-2021 30-Dec-2021 378454 phosphorus, total 7723-14-0 0.0060 0.0020 mg/L E372-U 31-Dec-2021 31-Dec-2021 378657

Analytical Results

CG2107254-003									
Sub-Matrix: Water	Client sample ID: ELK RIVER UPSTREAM								
(Matrix: Water)	Client sampling date / time: 29-Dec-2021 10:30								
Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot	
Anions and Nutrients									
nitrate + nitrite (as N)		1.69	0.0051	mg/L	EC235.N+N	-	03-Jan-2022	-	
Bacteriological Tests									
coliforms, thermotolerant [fecal]		1	1	CFU/100mL	E012.FC	-	31-Dec-2021	379452	

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

CG2107254-004

Sub-Matrix:Water (Matrix: Water)

Client sample ID: ELK RIVER OUTFALL Client sampling date / time: 29-Dec-2021 10:15

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
рН		8.23	0.10	pH units	E108	30-Dec-2021	30-Dec-2021	378696
solids, total suspended [TSS]		<3.0	3.0	mg/L	E160-H	-	02-Jan-2022	378397
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	0.0433	0.0050	mg/L	E298	30-Dec-2021	30-Dec-2021	378433
nitrate (as N)	14797-55-8	15.5	0.0050	mg/L	E235.NO3-L	30-Dec-2021	30-Dec-2021	378574
nitrite (as N)	14797-65-0	0.0685	0.0010	mg/L	E235.NO2-L	30-Dec-2021	30-Dec-2021	378573
phosphate, ortho-, dissolved (as P)	14265-44-2	0.0791	0.0010	mg/L	E378-U	30-Dec-2021	30-Dec-2021	378454
phosphorus, total	7723-14-0	0.0707	0.0020	mg/L	E372-U	31-Dec-2021	31-Dec-2021	378657
nitrate + nitrite (as N)		15.6	0.0051	mg/L	EC235.N+N	-	03-Jan-2022	-
Bacteriological Tests								
coliforms, thermotolerant [fecal]		3	1	CFU/100mL	E012.FC	-	31-Dec-2021	379452

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: CG2107254	Page	: 1 of 9	
Client	: Fernie Alpine Resort Utilities Corporation	Laboratory	: Calgary - Environmental	
Contact	: Patrick Majer	Account Manager	: Patryk Wojciak	
Address	: 1505 - 17TH AVENUE SW	Address	2559 29th Street NE	
	Calgary AB Canada T2T 0E2		Calgary, Alberta Canada T1Y 7B5	
Telephone	403 254 7669	Telephone	: +1 403 407 1800	
Project	: FARUC WINTER EMS WEEK 3	Date Samples Received	: 30-Dec-2021 08:50	
PO	:	Issue Date	: 07-Jan-2022 13:28	
C-O-C number	:			
Sampler	: Kevin Mackey			
Site	:			
Quote number	: CG21-FARU100-0002			
No. of samples received	: 5			
No. of samples analysed	: 4			

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- <u>No</u> Duplicate outliers occur.
- No Matrix Spike outliers occur.
- Laboratory Control Sample (LCS) outliers occur please see following pages for full details.
- <u>No</u> Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• <u>No</u> Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment			
Laboratory Control Sample (I	boratory Control Sample (LCS) Recoveries										
Aggregate Organics	QC-378779-002		biochemical oxygen demand [BOD]		E550	73.3 % LCS-ND	85.0-115%	Recovery less than lower control limit			
Result Qualifiers											
Qualifier	Description										
LCS-ND	Lab Control Sample recovery samples were unaffected.	results for associated									

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; •	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Biochemical Oxygen Demand - 5 day										
HDPE [BOD HT 3d]										
WWTP EFFLUENT	E550	29-Dec-2021					30-Dec-2021	3 days	1 days	~
Aggregate Organics : Biochemical Oxygen Demand - 5 day										
HDPE [BOD HT 3d]										
WWTP INFLUENT\	E550	29-Dec-2021					30-Dec-2021	3 days	1 days	1
Aggregate Organics : Chemical Oxygen Demand by Colourimetry (Low Level)					1					
Amber glass total (sulfuric acid) WWTP EFFLUENT	E559-L	29-Dec-2021					04-Jan-2022	28 days	6 daya	1
WWIP EFFLOENI	E009-L	29-Dec-2021					04-Jan-2022	20 uays	0 uays	•
Anions and Nutrients : Ammonia by Fluorescence										
Amons and Nutrients : Ammonia by Fluorescence Amber glass total (sulfuric acid)										
ELK RIVER OUTFALL	E298	29-Dec-2021	30-Dec-2021				30-Dec-2021	28 days	1 davs	1
								,	,	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
ELK RIVER UPSTREAM	E298	29-Dec-2021	30-Dec-2021				30-Dec-2021	28 days	1 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
WWTP EFFLUENT	E298	29-Dec-2021	30-Dec-2021				30-Dec-2021	28 days	1 days	1
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace	Level)									
	E270 L	29-Dec-2021					20 Dec 2024	2 days	1 days	1
ELK RIVER OUTFALL	E378-U	29-Dec-2021					30-Dec-2021	3 days	1 days	*

atrix: Water		0 <i>1 1</i> -					Holding time exce			Tiolaing
Inalyte Group Container / Client Sample ID(s)	Method	Sampling Date	Ext Preparation Date	raction / Pr Holding Rec	eparation g Times Actual	Eval	Analysis Date	Analys Holding Rec	ais g Times Actual	Eval
nions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trad	ce Level)									
HDPE ELK RIVER UPSTREAM	E378-U	29-Dec-2021					30-Dec-2021	3 days	1 days	~
nions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trad	ce Level)									
HDPE WWTP EFFLUENT	E378-U	29-Dec-2021					30-Dec-2021	3 days	1 days	*
nions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE ELK RIVER OUTFALL	E235.NO3-L	29-Dec-2021					30-Dec-2021	3 days	1 days	1
nions and Nutrients : Nitrate in Water by IC (Low Level)				1						
HDPE ELK RIVER UPSTREAM	E235.NO3-L	29-Dec-2021					30-Dec-2021	3 days	1 days	~
nions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE WWTP EFFLUENT	E235.NO3-L	29-Dec-2021					30-Dec-2021	3 days	1 days	~
nions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE ELK RIVER OUTFALL	E235.NO2-L	29-Dec-2021					30-Dec-2021	3 days	1 days	1
nions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE ELK RIVER UPSTREAM	E235.NO2-L	29-Dec-2021					30-Dec-2021	3 days	1 days	*
nions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE WWTP EFFLUENT	E235.NO2-L	29-Dec-2021					30-Dec-2021	3 days	1 days	1
nions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid) ELK RIVER OUTFALL	E372-U	29-Dec-2021	31-Dec-2021				31-Dec-2021	28 days	2 days	1

Page Work Order	: 5 of 9 · CG2107254
Client	: Fernie Alpine Resort Utilities Corporation
Project	FARUC WINTER EMS WEEK 3

latrix: Water Analyte Group	Method	Sampling Date	Ev	traction / Pr			Holding time exce	Analys		
Container / Client Sample ID(s)	Method	Sampling Date	Preparation Date		g Times Actual	Eval	Analysis Date	-	g Times Actual	Eval
nions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid) ELK RIVER UPSTREAM	E372-U	29-Dec-2021	31-Dec-2021				31-Dec-2021	28 days	2 days	~
nions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid) WWTP EFFLUENT	E372-U	29-Dec-2021	31-Dec-2021				31-Dec-2021	28 days	2 days	1
acteriological Tests : Thermotolerant (Fecal) Coliform (MF-mFC)										
Sterile HDPE (Sodium thiosulphate) ELK RIVER OUTFALL	E012.FC	29-Dec-2021					31-Dec-2021	30 hrs	49 hrs	¥ EHTL
Bacteriological Tests : Thermotolerant (Fecal) Coliform (MF-mFC)										
Sterile HDPE (Sodium thiosulphate) ELK RIVER UPSTREAM	E012.FC	29-Dec-2021					31-Dec-2021	30 hrs	49 hrs	¥ EHTL
Bacteriological Tests : Thermotolerant (Fecal) Coliform (MF-mFC)										
Sterile HDPE (Sodium thiosulphate) WWTP EFFLUENT	E012.FC	29-Dec-2021					31-Dec-2021	30 hrs	49 hrs	¥ EHTL
Physical Tests : pH by Meter										
HDPE ELK RIVER OUTFALL	E108	29-Dec-2021					30-Dec-2021	0.25 hrs	27 hrs	¥ EHTR-F
Physical Tests : pH by Meter										
HDPE ELK RIVER UPSTREAM	E108	29-Dec-2021					30-Dec-2021	0.25 hrs	27 hrs	¥ EHTR-F
Physical Tests : pH by Meter										
HDPE WWTP EFFLUENT	E108	29-Dec-2021					30-Dec-2021	0.25 hrs	27 hrs	¥ EHTR-F
hysical Tests : pH by Meter										
HDPE WWTP INFLUENT\	E108	29-Dec-2021					30-Dec-2021	0.25 hrs	27 hrs	¥ EHTR-F

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; •	= Within	Holding Tir
Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TSS by Gravimetry										
HDPE ELK RIVER OUTFALL	E160-H	29-Dec-2021					02-Jan-2022	7 days	4 days	~
Physical Tests : TSS by Gravimetry										
HDPE ELK RIVER UPSTREAM	E160-H	29-Dec-2021					02-Jan-2022	7 days	4 days	1
Physical Tests : TSS by Gravimetry										
HDPE WWTP EFFLUENT	E160-H	29-Dec-2021					02-Jan-2022	7 days	4 days	√
Physical Tests : TSS by Gravimetry										
HDPE WWTP INFLUENT\	E160-H	29-Dec-2021					02-Jan-2022	7 days	4 days	4

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water Quality Control Sample Type			on: × = QC freque	ount			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Frequency (%)	Evaluation
Laboratory Duplicates (DUP)							
Ammonia by Fluorescence	E298	378433	1	14	7.1	5.0	1
Biochemical Oxygen Demand - 5 day	E550	378779	1	20	5.0	5.0	
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	380352	1	20	5.0	5.0	 ✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	378454	1	11	9.0	5.0	
Nitrate in Water by IC (Low Level)	E235.NO3-L	378574	1	20	5.0	5.0	
Nitrite in Water by IC (Low Level)	E235.NO2-L	378573	1	20	5.0	5.0	
pH by Meter	E108	378696	1	20	5.0	5.0	
Thermotolerant (Fecal) Coliform (MF-mFC)	E012.FC	379452	1	19	5.2	5.0	
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	378657	1	12	8.3	5.0	
TSS by Gravimetry	E160-H	378397	1	12	8.3	5.0	
Laboratory Control Samples (LCS)							-
Ammonia by Fluorescence	E298	378433	1	14	7.1	5.0	1
Biochemical Oxygen Demand - 5 day	E550	378779	1	20	5.0	5.0	
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	380352	1	20	5.0	5.0	 ✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	378454	1	11	9.0	5.0	
Nitrate in Water by IC (Low Level)	E235.NO3-L	378574	1	20	5.0	5.0	
Nitrite in Water by IC (Low Level)	E235.NO2-L	378573	1	20	5.0	5.0	
pH by Meter	E108	378696	1	20	5.0	5.0	
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	378657	1	12	8.3	5.0	
TSS by Gravimetry	E160-H	378397	1	12	8.3	5.0	
Method Blanks (MB)							-
Ammonia by Fluorescence	E298	378433	1	14	7.1	5.0	1
Biochemical Oxygen Demand - 5 day	E550	378779	1	20	5.0	5.0	
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	380352	1	20	5.0	5.0	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	378454	1	11	9.0	5.0	
Nitrate in Water by IC (Low Level)	E235.NO3-L	378574	1	20	5.0	5.0	
Nitrite in Water by IC (Low Level)	E235.NO2-L	378573	1	20	5.0	5.0	
Thermotolerant (Fecal) Coliform (MF-mFC)	E012.FC	379452	1	19	5.2	5.0	
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	378657	1	12	8.3	5.0	
TSS by Gravimetry	E160-H	378397	1	12	8.3	5.0	
Matrix Spikes (MS)							•
Ammonia by Fluorescence	E298	378433	1	14	7.1	5.0	1
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	380352	1	20	5.0	5.0	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	378454	1	11	9.0	5.0	
Nitrate in Water by IC (Low Level)	E235.NO3-L	378574	1	20	5.0	5.0	
Nitrite in Water by IC (Low Level)	E235.NO2-L	378573	1	20	5.0	5.0	
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	378657	1	12	8.3	5.0	

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Thermotolerant (Fecal) Coliform (MF-mFC)	E012.FC Calgary - Environmental	Water	APHA 9222 D (mod)	Following filtration (0.45 μm), and incubation at 44.5 ±0.2°C for 22-26 hours, colonies exhibiting characteristic morphology of the target organism are enumerated and confirmed.
pH by Meter	E108 Calgary - Environmental	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
TSS by Gravimetry	E160-H Calgary - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
Nitrite in Water by IC (Low Level)	E235.NO2-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U Calgary - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a flow analyzer on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Biochemical Oxygen Demand - 5 day	E550 Calgary - Environmental	Water	APHA 5210 B (mod)	Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Free chlorine is a negative interference in the BOD method; please advise ALS when free chlorine is present in samples.
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L Calgary - Environmental	Water	APHA 5220 D (mod)	Samples are analyzed using the closed reflux colourimetric method.
Nitrate and Nitrite (as N) (Calculation)	EC235.N+N Calgary - Environmental	Water	EPA 300.0	Nitrate and Nitrite (as N) is a calculated parameter. Nitrate and Nitrite (as N) = Nitrite (as N) + Nitrate (as N).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions

Page	: 9 of 9
Work Order	: CG2107254
Client	: Fernie Alpine Resort Utilities Corporation
Project	: FARUC WINTER EMS WEEK 3

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
	Calgary - Environmental			
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	Calgary - Environmental			

QUALITY CONTROL REPORT

Work Order	CG2107254	Page	: 1 of 6
Client	: Fernie Alpine Resort Utilities Corporation	Laboratory	: Calgary - Environmental
Contact	Patrick Majer	Account Manager	: Patryk Wojciak
Address	1505 - 17TH AVENUE SW	Address	2559 29th Street NE
Telephone	Calgary AB Canada T2T 0E2 : 403 254 7669	Telephone	Calgary, Alberta Canada T1Y 7B5 : +1 403 407 1800
Project	FARUC WINTER EMS WEEK 3	Date Samples Received	: 30-Dec-2021 08:50
PO	:	Date Analysis Commenced	: 30-Dec-2021
C-O-C number	:	Issue Date	:07-Jan-2022 13:28
Sampler	: Kevin Mackey		
Site	:		
Quote number	: CG21-FARU100-0002		
No. of samples received	: 5		
No. of samples analysed	: 4		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Erin Sanchez		Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Microbiology, Calgary, Alberta
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Sunil Palak		Inorganics, Calgary, Alberta
Vladka Stamenova	Analyst	Inorganics, Calgary, Alberta

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

- Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.
- CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.
- DQO = Data Quality Objective.
- LOR = Limit of Reporting (detection limit).
- RPD = Relative Percentage Difference
- # = Indicates a QC result that did not meet the ALS DQO.

Page	: 3 of 6
Work Order	: CG2107254
Client	: Fernie Alpine Resort Utilities Corporation
Project	: FARUC WINTER EMS WEEK 3

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier	
Physical Tests (QC	: Lot: 378397)											
CG2107231-001	Anonymous	solids, total suspended [TSS]		E160-H	3.0	mg/L	20.3	21.5	1.2	Diff <2x LOR		
Physical Tests (QC	Lot: 378696)											
CG2107244-001	Anonymous	рН		E108	0.10	pH units	7.75	7.76	0.129%	4%		
Anions and Nutrien	ts (QC Lot: 378433)											
CG2107244-007	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.125	mg/L	5.01	5.06	1.07%	20%		
Anions and Nutrien	ts (QC Lot: 378454)					1						
CG2107244-007	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR		
Anions and Nutrien	ts (QC Lot: 378573)											
CG2107256-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0200	mg/L	0.0942	0.0960	0.0018	Diff <2x LOR		
Anions and Nutrien	ts (QC Lot: 378574)											
CG2107256-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.100	mg/L	272	277	1.85%	20%		
Anions and Nutrien	ts (QC Lot: 378657)											
CG2107254-002	WWTP EFFLUENT	phosphorus, total	7723-14-0	E372-U	0.0100	mg/L	0.310	0.321	3.64%	20%		
Bacteriological Tes	ts (QC Lot: 379452)											
CG2107254-004	ELK RIVER OUTFALL	coliforms, thermotolerant [fecal]		E012.FC	1	CFU/100mL	3	2	1	Diff <2x LOR		
Aggregate Organic	s (QC Lot: 378779)											
CG2107235-010	Anonymous	biochemical oxygen demand [BOD]		E550	2.0	mg/L	<2.0	<2.0	0.0%	30%		
Aggregate Organic	s (QC Lot: 380352)	·			1							
CG2107244-003	Anonymous	chemical oxygen demand [COD]		E559-L	10	mg/L	14	15	0.8	Diff <2x LOR		

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water						
Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 378397)						
solids, total suspended [TSS]		E160-H	3	mg/L	<3.0	
Anions and Nutrients (QCLot: 378433)						
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 378454)						
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 378573)						
nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 378574)						
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 378657)						
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020	
Bacteriological Tests (QCLot: 379452)						
coliforms, thermotolerant [fecal]		E012.FC	1	CFU/100mL	<1	
Aggregate Organics (QCLot: 378779)						
biochemical oxygen demand [BOD]		E550	2	mg/L	<2.0	
Aggregate Organics (QCLot: 380352)						
chemical oxygen demand [COD]		E559-L	10	mg/L	<10	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 378397)									
solids, total suspended [TSS]		E160-H	3	mg/L	150 mg/L	95.5	85.0	115	
Physical Tests (QCLot: 378696)									
рН		E108		pH units	7 pH units	99.4	98.6	101	
Anions and Nutrients (QCLot: 378433)									
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	103	85.0	115	
Anions and Nutrients (QCLot: 378454)									
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.02 mg/L	97.8	80.0	120	
Anions and Nutrients (QCLot: 378573)									
nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	99.3	90.0	110	
Anions and Nutrients (QCLot: 378574)									
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	103	90.0	110	
Anions and Nutrients (QCLot: 378657)									
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	8.02 mg/L	87.8	80.0	120	
Aggregate Organics (QCLot: 378779)						1			
biochemical oxygen demand [BOD]		E550	2	mg/L	198 mg/L	# 73.3	85.0	115	LCS-ND
Aggregate Organics (QCLot: 380352)									
chemical oxygen demand [COD]		E559-L	10	mg/L	100 mg/L	108	85.0	115	
Qualifiers			I	1	1	1		1	1
Qualifier	Description								

LCS-ND	Lab Control Sample recovery was slightly outside ALS DQO. Reported non-detect results for
	associated samples were unaffected.

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							Matrix Spil	ke (MS) Report		
					Sp	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Anions and Nutri	ents (QCLot: 378433)									
CG2107244-011	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.113 mg/L	0.1 mg/L	113	75.0	125	
Anions and Nutri	ents (QCLot: 378454)									
CG2107244-008	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0502 mg/L	0.05 mg/L	100	70.0	130	
Anions and Nutri	ents (QCLot: 378573)									
CG2107256-002	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.452 mg/L	0.5 mg/L	90.5	75.0	125	
Anions and Nutri	ents (QCLot: 378574)									
CG2107256-002	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	ND mg/L	2.5 mg/L	ND	75.0	125	
Anions and Nutrients (QCLot: 378657)										
CG2107254-003	ELK RIVER UPSTREAM	phosphorus, total	7723-14-0	E372-U	0.0681 mg/L	0.0676 mg/L	101	70.0	130	
Aggregate Organ	nics (QCLot: 380352)									
CG2107244-004	Anonymous	chemical oxygen demand [COD]		E559-L	103 mg/L	100 mg/L	103	75.0	125	

ALS Environmental

ANALYTICAL CHEMISTRY & TESTING SERVICES

www.alsenviro.com

Vancouver BC, 1988 Triumph Street, VSL 1K5. Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253-6700 Fort St. John BC, Box 256, 9831 - 99A Avenue, V1J 6W7, Tel: 250-261-5517 Fax: 250-261-5587 Grand Prairie AB, 9595 - 111 Street, T8V 5W1, Tel: 780-539-5196 Toll Free: 1-800-668-9878 Fax: 780-513-2191 Fort McMurray AB, Bay 1, 245 Macdonald Cr. T9H 485, Tel: 780-791-1524 Fax: 780-791-1586 Edmonton AB, 9936 - 67th Avenue, T6E 0P5, Tel: 780-413-5227 Toll Free: 1-800-668-9878 Fax: 780-437-2311 Calgary AB, Bay 7, 1313 - 44th Avenue NE, T2E 6L5, Tel: 403-291-9897 Toll Free: 1-800-668-9878 Fax: 400 Fot Acons Saskatoon SK, 819 - 58th Street East, S7K 6X5, Tel: 306-668-8370, Toll Free: 1-800-667-7645 Fax: 306

SEN	D REPORT 1	TO:					CHAIN OF	CUS	STO	DY	' FC	RN	ſ							Envir Calga		ntal Div	ision	
COM	PANY.	FERNIE ALI	PINE RESORT	UTILITIES CORPO	ORATION	ATTN	PATRICK MAJER			÷	REQU	_	÷					-		Wo	rk [°] Ordei	r Refere	nce	7
ADD	RESS:	1505 - 17TH	AVENUE SOU	ITH WEST				1	T		1					ľ		T		С	G2 ⁻	107	254 👘	1
CIT	<u>.</u>	CALGARY		PROV: ALBER	RTA	POSTAL CODE	T2T 0E2											ļ.						1
TEL.	- 1. 1	403 - 256 - 6	3473	FAX: 403 - 2	244 - 3774	SAMPLER	Kevin Mackey	Π.								:		1			,, <u>I</u>			
PRC	JECT NAME	AND NO .:	FARUC - Winte	er EMS week 3		QUOTE NO								· · ·								<u>//////</u> //		
POI	10.:	ALS CONTACT: Patryk Woyciak				Ϊ.,					1											1		
		HARDCOPY FMAIL - ADDRES			r.com														i n i 'U.P.	3.2 <i>1</i> 010				
REP	ORT FORMA	U:	□ FAX					Coliforms											īe	sephan.	á. – 1408	8 407 1600		
-	WO#	1			1						٩	٩	7	-	-			\sim	1 1		1.1			{
÷.,		S	AMPLE IDENTIF	ICATION	YYYY-MM-DD	TIME	MATRIX	Fecal	TSS	Ha	Ortho	Total	NH3-N	N-SON	NO2-N	BOD5	cop						mple specific le dates, etc.)	
		WWTP Influ	ent Routine		2021-12-29	9:405	Water	<u> </u>	×	X	0	<u> </u>	z	z	z	B	<u></u>					9.8		1
- 1 - 10	· · · · -	WWTP Influe			2021-12-29	113	Water		<u>^</u>	<u>├</u>						x			•			1-6	<u> </u>	4
		WWTP Efflu	· · · ·		2021-12-29	10:00	Water		+ x	x					-	^	X	<u> </u>			+	10-2	. <u> </u>	-
	<u></u>	WWTP Efflu	<u> </u>	· · · · ·	2021-12-20	1.01,00	Water		Ļ^	<u> </u> ^	-		<u> </u>			x	^				<u> </u>	10-2		1
	<u> </u>	WWTP Efflu			2021-12-29	<u> </u>	Water	+ .		<u> </u>	×	X	x	x	. x	^	1.5		· .					ł
· ·		1.1.1.1	ent Bacteriologi	cal	2021-12-29		Water	$\frac{1}{x}$			^		 ^	<u> </u>	.^						·			-
			stream Routine		2021-12-29	10:30	Water	+^	X	· x				-								~ T	18	1
≻			stream Nutrient:	· · · · · · · · · · · · · · · · · · ·	2021-12-29	10:30	Water	· · ·	^	^	x	X	×	X								6-2		
FOR LAB USE ONLY	Elk River Upstream Bacteriological 2021-12-29			Water	x	<u> </u>		^	<u>^</u>		•	Х				-,-					-			
ы						<u> </u>						·.		•••		<u>s 7</u>				1				
э́				10,15	Water		X	X									· . .			5-1	<u> </u>	1		
זֿ				2021-12-29		Water	· ·	<u> </u>		X	X	X	X ¹	X									Į	
β̈́ ŀ	Elk River @ Outfall Bacteriological 2021- Elk River Downstream Routine 2021-			2021-12-29	10 (15	Water	X.				· ·												1	
			<u> </u>		2021-12-29	10:45	Water	1.0.0	X	X	<u></u>	с., ²									6	<u>~ (</u>		
-	<u> </u>		wnstream Nutrie		2021-12-29		Water	-			X	X	X	Х	X							jum		
		Elk River Dov	wnstream Bacte		2021-12-29		Water	<u>,</u> X,		· · · .					100 A			-					e rue	F
.			·						ļ												4	Tries	ζ	1
3- 			90.2 ST 1					. 50	Ĺ		Ъ.						· .							1
-						1			ļ															
:		·	<u></u>							,				· .	÷ 7				•					
4		L			L	·			l															
TURN	AROUND R	EQUIRED:	ROUTIN	IE ORUSH	SPECIFY DATE:		(surcharge may apply)				NQUIS		BY:		D	ATE:	2	021-1	2-29	RECEN	ED BY:	DATE:	12/30	
SENF	INVOICE TO				EDENT COOL					Kevir	n Mac	key		.	T	IME:		1		Rof		TIME:	8:50	1
·	CE FORMAT						ovide details	•		RELI	NQUIS	HED	BY:		D	ATE:				RECÉN	ED BY:	DATE:		2
	IAL INSTRUC			OPY DPF							·		<u> </u>		T	IME:						TIME:		0
		5110115. 1 \	vastewater@sk	ifernie.com	ESULTS TO 250	-423-4652 OR E	-MAIL TO				LAB		·	- 1	<u></u>		· · · :			<u></u>		1 ····	<u>-</u>	1
			-								er Seal es					le Ten n?		ure:N	0 lo		ooling Mel		None	I
-									_				· · · · ·			_		^				- <u>ice</u>		

G:/QUALITY/00_DDCUMENTS/10_AUTHORIZED/FORMS/CoC for ALS EMS.xts

Acute Toxicity Test Results

Sample collected January 11, 2021

Final Report

January 25, 2021

Submitted to: Fernie Alpine Resort Fernie, BC

#4, 6125 12 Street SE, Calgary, AB T2H 2K1

SAMPLE INFORMATION

Comple ID/		Dates		Dessint
Sample ID/ Internal ID	Collected	Received	Rainbow trout test initiation	 Receipt temperature
WASTEWATER /	11-Jan-21 at	12-Jan-21 at	13-Jan-21 at	7.3°C
2021-0859	1130h	0950h	1420h	7.3 C

TEST TYPES

• Rainbow trout 96-h LC50 test

RESULTS

Toxicity test results

Sample ID	Rainbow trout LC50 (% v/v)
WASTEWATER	>100

LC = Lethal Concentration

QA/QC

QA/QC summary	Rainbow trout
Reference toxicant LC50 (95% CL)	3.9 (3.6-4.3) g/L KCl ¹
Reference toxicant historical mean (2 SD Range)	3.6 (2.8-4.6) g/L KCl
Reference toxicant CV	8.2%
Organism health history	Acceptable
Protocol deviations	None
Water quality range deviations	None
Control performance	Acceptable
Test performance	Valid

¹Test date, December 21, 2020

LC = Lethal Concentration; CL = Confidence Limit

that Cell.

Report By: Shae Cole, BSc Biologist

Reviewed By: Kayla Knol, BSc Senior Biologist

This report has been prepared by Nautilus Environmental Company Inc. based on data and/or samples provided by our client and the results of this study are for their sole benefit. Any reliance on the data by a third party is at the sole and exclusive risk of that party. The results presented here relate only to the samples tested.

APPENDIX A – Summary of test conditions

Test species	Oncorhynchus mykiss
Organism source	Fish hatchery
Organism age	Juvenile
Test type	Static
Test duration	96 hours
Test vessel	5 gallon glass aquariums
Test volume	10 - 20 L, depending on size of fish
Test solution depth	Minimum 15 cm
Test concentrations	Five concentrations, plus laboratory control
Test replicates	1 per treatment
Number of organisms	10 per replicate
Control/dilution water	De-chlorinated City of Calgary tap water
Test solution renewal	None
Test temperature	15 ± 1°C
Feeding	None
Light intensity	100 to 500 lux
Photoperiod	16 hours light/8 hours dark
Aeration	6.5 ± 1 mL/min/L
Test Measurements	pH, conductivity, dissolved oxygen and temperature were measured at test initiation and test completion; salinity measured at test initiation; evaluated for survival daily
Test protocol	Environment Canada (2000), EPS 1/RM/13, with 2007 & 2016 amendments
Statistical software	None
Test endpoints	96-hour LC50
Test acceptability criteria for controls	Survival ≥ 90%
Reference toxicant	Potassium chloride (KCl)

Table 1.Summary of test conditions: 96-h rainbow trout (Oncorhynchus mykiss)
survival test.

APPENDIX B – Toxicity test data

Trout Bench Sheet

Method	Client	FER 116	Reference	2021-0859		_Chamber	9
Test Log						Sample Informa	ation
Day					Daily Data	1	
Day	Date	Time	Initial	Chem. Cart	Review	Initial pH:	1.6
0	1/13/2021	1420 .	MW / MF	1	14	Initial EC (µS/cm	
2	1/14/2021	0800	IM	<u></u>	MIT	Initial DO (mg/L)	
3	1/15/2021	10W	n	155	WIF	Initial Temp (C):	
4	1/17/2021	0945	AL .	1992	WIF,	Salinity (ppt):	D
4	1/11/2021	Noter to time	Lottle	vas loaded with	-Mw		
Sample Pre-	Aeration	Note, time	when the test v	vas loaded with	11511	DO in mg/L (70	% - 100%
•	adjusted to 6.5 +/- 1 mL/	min///war				saturation)**	
Preaeration t		0.5 hours	1 hour	1.5 hours	2 hours	6.2 mg/L - 8.9 mg/L	at 14°C
DO(mg/L) of		Ca	I	1.5 110013	2 110013	6.1 mg/L - 8.8 mg/L	
	10010	6.1				6.0 mg/L - 8.6 mg/L	
Test Chemis	try and Biology					**corrected for altitu	
Conc.	CTL 6.25	12.5	25	50	100		inter and a second seco
		1949		<u> </u>			
			pH (units) (ra	ange: 5.5-8.5)			
Day 0	7.5 7.6	7.6	75	7.5	7.4		
Day 4	28 5	2 78	2.8	77	76	1	
-	Tr.				1 P		
			EC (u	iS/cm)			
Day 0	496 535	574	641	802	1100		
Day 4	491 383	3 571	644	810	1101		
				6.18			
		DO (mg,	/L) (70-100% si	aturation at tes	st temp.)		
Day 0	8.9 8.9	89	8.9	89	8.9		
Day 4	8.6 814	7.5	25	814	8.3		
		1					
		Т	emperature (°C	(range: 14-16°	C)		
Day 0	14 14	14	14	14	14		
Day 4	15 15	15	15	16	15		
		Numb	er Alive (In brac	kets number st	ressed)		
Day 0	10 10	10	10	10	10		
Day 1	10 10		10	0	10		
Day 2	10 10		10	10	10	J	
Day 3	10 10		10	10	()		
Day 4	10 (0		0)	10	10		
	Validity Criteria: must	be ≤ 10% mortality a	and/or stressed	behavior in the	e control		
	Unless otherwise noted,	behavior is consider	ed to be norma	al			
ontrol Orga					Test Organis	m Information	
Control	Length Weigh	ht					
Fish	(cm) (g)				Batch	20201114TR	
	2.6						
1	20 03	Loading Densi		0.2	Source	Troutlodge	
2	50 0.3	(must be ≤0.5 g/L)				
3	3.2 6.4			21	Tank #	2	
4	30 0.2	Mean Length (cm):	3.)			
5	3.3 O.A	-		0	Days Held at		37
6	3.2 0.3	Length Range	(cm):	3.0-3.3	(must be ≥14 d	ays)	
7	3.2 07						
8	30 0.1	Internet traight ((g):	0.3	Percent stock	mortality	0
9	3.0 0.2	(Must be ≥0.3g)			(7 days prior to t	est, must be ≤2%) 🧮	
10	3.0 0.7						
		Weight Range:	(g):	0.3-04	Test Volume	(L)	18
omments :							

Reviewed By: _____

Date Reviewed: 2010118

APPENDIX C – Chain-of-custody form

HydroQual Laboratories Ltd.

Test Request / Chain of Custody

Fax (403) 252-9363

(example: trout with 5 treatments, TR-D) Tests Requested (codes on back)

TR

50

5

Tel (403) 253-7121

#3, 6125 12th Street SE

Calgary, Alberta Canada T2H 2K1

d Billing Information Client:	
d Billing Information	Client
d Billing	Information
	d Billing I

Sample: Fer 116 FARUC

eration: FERNIE ALPINE RESORT UTILITIES CORPORATION	PATRICK MAJER
Client / Oper	Contact:

2T 0	
ALBERTA T	
CALGARY,	
1505 - 17TH AVENUE S.W. CALGARY, ALBERTA T2T 0	
Report Address: 1	

E2

Sample Received intact (y / n)

A T2T 0E2	
LBERT,	Fax
V. CALGA	
1505 - 17TH AVENUE S.W. CALGARY, A	
Billing Address:	Tel

- 244 - 3774

1 - 403

- 8730	
- 861	
1 - 403	
	Quote/PO/Job

Rush: 50% surcharge; 100% surcharge (evenings and weekends)

atments									
Notas: S = single treatment D = multiple treatments	2								
ant. D = m	ox belov								
le treatme	priate b						-		
S = sing	Check appropriate box below								
Notae.	Chec	×							
	0	It							
	Type	Effluent							
	Method	Grab							
	uc	Fernie Alpine Resort Grab							
	Location	rnie Alpine							
		Le Le							
ekends)	/ Time	/ 11:30							
Is and we	Sampled Bv / Date / Ti	Carter/ Jan 11, 2021 / 11:30							
evening	pled Bv	/ Jan 11							
surcharge	Sam	Carter							
Rush: 50% surcharge; 100% surcharge (evenings and weekends)	0	2							
6 surchar	Sample ID	EWATE		C1/	melitim	2x 20 1 001	2021-0869		
Rush: 50%	ŝ	WASTEWATER	J.S.E	C1/10/1000	AWIJC goed eurolithm	3× 301 002	1 tac		

Marian

HydroQual Laboratories Ltd.

Revised by KS on 2002/12/09 Written by SG on 1995/05/12

Edited by Foxit Reader Copyright(C) by Foxit Software Company,2005-2007 For Evaluation Only. File: F2000020.xls / test request Form: F2000020 v 3.0

Date / Time

Received By (HQ)

Jan 11/21 @ 11:30

Date / Time

Relinquished By Carter Barrett

END OF REPORT

Acute Toxicity Test Results

Sample collected April 28, 2021

Final Report

May 13, 2021

Submitted to: Fernie Alpine Resort Calgary, AB

#4, 6125 12 Street SE, Calgary, AB T2H 2K1

SAMPLE INFORMATION

Samula ID/		Dates		Deceint
Sample ID/ Internal ID	Collected	Received	Rainbow trout test initiation	Receipt temperature
WASTEWATER /	28-Apr-21 at	29-Apr-21 at	30-Apr-21 at	12 5%
2021-1330	1130h	1100h	1345h	12.5°C

TEST TYPES

• Rainbow trout 96-h LC50 test

RESULTS

Toxicity test results

Sample ID	Rainbow trout LC50 (% v/v)
WASTEWATER	>100

LC = Lethal Concentration

QA/QC

QA/QC summary	Rainbow trout
Reference toxicant LC50 (95% CL)	3.6 (3.4 - 3.9) g/L KCl ¹
Reference toxicant historical mean (2 SD Range)	3.6 (2.9 - 4.4) g/L KCl
Reference toxicant CV	6.6%
Organism health history	Acceptable
Protocol deviations	See below
Water quality range deviations	None
Control performance	Acceptable
Test performance	Valid

¹ Test date, April 15, 2021

LC = Lethal Concentration; CL = Confidence Limit, SD = Standard Deviation; CV = Coefficient of Variation

The rainbow trout test 100% concentration was supersaturated with dissolved oxygen at test setting and not aerated further to a maximum of 2 hours, resulting in a protocol deviation.

Dan h

Report By: Dana Wong, BSc Biologist

thiesen

Reviewed By: Sara Thiessen, BSc Senior Biologist

This report has been prepared by Nautilus Environmental Company Inc. based on data and/or samples provided by our client and the results of this study are for their sole benefit. Any reliance on the data by a third party is at the sole and exclusive risk of that party. The results presented here relate only to the samples tested.

APPENDIX A – Summary of test conditions

Test species	Oncorhynchus mykiss
Organism source	Fish hatchery
Organism age	Juvenile
Test type	Static
Test duration	96 hours
Test vessel	5 gallon glass aquariums
Test volume	10 - 20 L, depending on size of fish
Test solution depth	Minimum 15 cm
Test concentrations	Five concentrations, plus laboratory control
Test replicates	1 per treatment
Number of organisms	10 per replicate
Control/dilution water	De-chlorinated City of Calgary tap water
Test solution renewal	None
Test temperature	15 ± 1°C
Feeding	None
Light intensity	100 to 500 lux
Photoperiod	16 hours light/8 hours dark
Aeration	6.5 ±1 mL/min/L
Test Measurements	pH, conductivity, dissolved oxygen and temperature were measured at test initiation and test completion; salinity measured at test initiation; evaluated for survival daily
Test protocol	Environment Canada (2000), EPS 1/RM/13, with 2007 & 2016 amendments
Statistical software	None
Test endpoints	96-hour LC50
Test acceptability criteria for controls	Survival ≥ 90%
Reference toxicant	Potassium chloride (KCl)

Table 1.Summary of test conditions: 96-h rainbow trout (Oncorhynchus mykiss)
survival test.

APPENDIX B – Toxicity test data

A NALITILLIC

Trout Bench Sheet

est Log Sample Information Day Date Time Initial Chem. Cart. Dairy Dairy Initial pt (:	N ethod	TRD Client	FER116	Reference	2021-1330		Chamber			
Day Date Times Initial Chem. Cart Daily Obas Initial prime Initial prim Initial prim Initial prim	est Log						Sample Info	rmation		
Day Date Timuy Initial Chem. Can Review Initial PC (L)S(2m) 1 2021-09-01 02/30 93						Daily Data	1	mation		
D 2021-04-30 1940-05 DW/ST 1 Initial Co (mg/ST) I	_				Chem. Cart	Review	Initial pH:	75		
1 2021 05-01 07 mg/L 1 mital Temp (2) 3 2021 05-03 0 mital Temp (2) Saintly (ppt) Initial Temp (2) Saintly (ppt) Initial Temp (2) Saintly (ppt)			13405*	DW/ SY	1	SC		(cm): 6000		
2 2021-05-02 CHILD PLC			0830	R	345		Initial DO (m	a/LE GIX		
3 2021-05-03 OPIO Arrow Salinity (ppt): Note: *; time when the test was loaded with fight Imple Pre-Acration OT in mg/c (70%- 100 Salinity (ppt): OT in mg/c (70%- 100 Salinity (ppt): OT in mg/c (70%- 100 Salinity (ppt): OT in mg/c (70%- 100 Salinity on the adjusted to 6.5 +/- 1 mL/min/L: feetype OT in mg/c (70%- 100 Salinity on the adjusted to 6.5 +/- 1 mL/min/L: feetype OT in mg/c (70%- 100 Salinity on the adjusted to 6.5 +/- 1 mL/min/L: feetype OT in mg/c (70%- 100 Salinity on the adjusted to 6.5 +/- 1 mL/min/L: feetype OT in mg/c (70%- 100 Salinity on the adjusted to 6.5 +/- 1 mL/min/L: feetype OT in mg/c (70%- 100 OT in mg/c (70%- 100 Salinity on the adjusted to 6.5 +/- 1 mL/min/L: feetype OT in mg/c (70%- 100 De ph (initis) (range: 5.5-8.5) De (mg/c) (70%- 100%			1200	KL	-20					
4 2021-05-04 Automation ample Pre-Aeration reservation rate adjusted to 55 +/- 1 mL/min/L: (Expre- Demotion trate a			0910	AP	(m)	Tere				
Imple Pre-Aeration With the adjust of 0.5 + /-1 mL/min/L: Expression District of the adjust of 0.5 + /-1 mL/min/L: Expression District of the adjust of 0.5 + /-1 mL/min/L: Expression District of the adjust of 0.5 + /-1 mL/min/L: Expression District of the adjust of 0.5 + /-1 mL/min/L: Expression District of the adjust of 0.5 + /-1 mL/min/L: Expression District of the adjust of 0.5 + /-1 mL/min/L: Expression District of the adjust of 0.5 + /-1 mL/min/L: Expression District of the adjust of 0.5 + /-1 mL/min/L: Expression District of the adjust of 0.5 + /-1 mL/min/L: Expression District of the adjust of 0.5 + /-1 mL/min/L: Expression District of the adjust of 0.5 + /-1 mL/min/L: Expression District of the adjust of 0.5 + /-1 mL/min/L: Expression District of the adjust of 0.5 + /-1 mL/min/L: Expression District of the adjust of 0.5 + /-1 mL/min/L: Expression District of the adjust of 0.5 + /-1 mL/min/L: Expression District of the adjust of 0.5 + /-1 mL/min/L: Expression District of the adjust of 0.5 + /-1 mL/min/L: Expression District of the adjust of 0.5 + /-1 mL/min/L: Expression District of the adjust of 0.5 + /-1 mL/min/L: Expression District of the adjust of 0.5 + /-1 mL/min/L: Expression District of the adjust of 0.5 + /-1 mL/min/L: Expression District of the adjust of 0.5 + /-1 mL/min/L: Expression District of the adjust of 0.5 + /-1 mL/min/L: Expression District of the adjust of 0.5 + /-1 mL/min/L: Expression District of the adjust of 0.5 + /-1 mL/min/L: Expression Distris + /-1 mL/min/L: Expression District of 0.5 +	4	2021-05-04	1015	Page 1	F	6		-		
stration atte adjusted to 6.5 + /- 1 ml/min/L: (arging to 100 mg/L) of 100% stration/* stration/* <th <="" colspan="2" td=""><td>mole Pre</td><td>Acratica</td><td>Note: * ; time</td><td>when the test w</td><td>vas loaded with</td><td>fish</td><td>182</td><td></td></th>	<td>mole Pre</td> <td>Acratica</td> <td>Note: * ; time</td> <td>when the test w</td> <td>vas loaded with</td> <td>fish</td> <td>182</td> <td></td>		mole Pre	Acratica	Note: * ; time	when the test w	vas loaded with	fish	182	
Def hours 1 hour 1.5 hours 2 hours 6 angl. a list of colspan="2">6 angl. a list of colspan="2" angl. a list o			1.5				and the second sec			
Dimg/L) of 100% Dimg/L bit 1000 Dimg/L bit 10000 Dimg/L bit 10000 <t< td=""><td></td><td></td><td></td><td>4 1</td><td></td><td></td><td></td><td></td></t<>				4 1						
set Chemistry and Biology Conc CTL 6.3 12.5 25 50 100 PH (units) (range: 5.5-8.5) Day 0 Day 0 Day 4 Conc CTL 6.3 12.5 25 50 100 PH (units) (range: 5.5-8.5) Day 0 Day 4 Conc CTL 6.3 12.5 25 50 100 PH (units) (range: 5.5-8.5) Day 0 Day 4 Conc CTL 5.0 0.0 0 PH (units) (range: 1.4 16°C) Day 0 Day 4 Conc CTL 5.0 0 CONC			0.5 hours	i nour	1.5 hours	2 hours				
**corrected for ablude Conc. Character for ablude Conc. Character for ablude Day 0 Conc. CC. (CL 6.3 Conc. CC. (CL 6.3 10 CC. (CL 6.3 10 Conc. CC. (CL 6.3 10 Conc. (CL 6.3 12.5 5.5.8.5) Day 0 Conc. (CL 6.3 CONC. (CL 6.3 CC. (CL 6.3 CC. (CL 6.3 CC. (CL 6.3 CL 6.3 CC. (CL 6.3 CL 6.3 CC. (CL 6.3 CL 6.3 CL 6.3 CC CL 6.3 CC CL 6.3 CL 6.3 CL 6.3 CL 6.3 CL 6.3 CL 6.3 CL 6.3 CL 6.3 CL 6.3 CL 6.3 CL 6.	J(IIIg/L) 01	100%	4.5							
Conc. Cline Cline <thcline< th=""> <thcline< th=""> <thc< td=""><td>ct Chamic</td><td>toy and Pielemu</td><td></td><td></td><td></td><td></td><td></td><td></td></thc<></thcline<></thcline<>	ct Chamic	toy and Pielemu								
Day 0 pH (units) (range: 5.5-8.5) Day 4 Day 0 EC (us/cm) Day 0 Engretature (C) (range: 14-16C) Day 1 Engretature (C) (range: 14-16C) Day 2 Engretature (C) (range: 14-16C) Day 1 Engretature (C) (range: 14-16C) Day 2 Engretature (C) (range: 14-16C) Day 3 Engretature (C) (range: 14-16C) Day 4 Engretature (C) (range: 14-16C) Day 3 Engretature (C) (range: 14-16C) Day 4 Engretature (C) (range: 14-16C) Day 4 Engretature (C) (range: 14-16C) Day 5 Engretature (C) (range: 14-16C) Day 4 Engretature (C) (range: 14-16C) Day 5 <td></td> <td>and the second sec</td> <td>10 5</td> <td>25</td> <td>50</td> <td>100</td> <td>**corrected for a</td> <td>ltitude</td>		and the second sec	10 5	25	50	100	**corrected for a	ltitude		
Day 0 Day 4 Day 0 Day 0 Day 4 Day 0 Day 10 10 10 10 10 10 10 10 10 10	conc.		12,5	25	50	100	I	1		
Day 0 Day 0 Day 0 EC (uS/cm) Day 0 Do (mg/L) (70-100% saturation at test temp.) Day 0 Day 0 Do (mg/L) (70-100% saturation at test temp.) Day 0 Day 0 Do (mg/L) (70-100% saturation at test temp.) Day 0 Day 0 Day 0 Do (mg/L) (70-100% saturation at test temp.) Day 0 Day 0 Day 0 Imperature (C) (range: 14-15°C) Day 0 Day 0 Imperature (C) (range: 14-15°C) Day 0 Day 0 Imperature (C) (range: 14-15°C) Day 0 Day 0 Imperature (C) (range: 14-15°C) Day 0 Day 0 Imperature (C) (range: 14-15°C) Day 0 Day 0 Imperature (C) (range: 14-15°C) Day 0 Day 0 Imperature (C) (range: 14-15°C) Day 0 Day 0 Imperature (C) (range: 14-15°C) Day 10 Imperature (C) (range: 14-15°C) Day 10 Imperature (C) (range: 14-15°C) Imperature (C) (range: 14-15°C) Day 10 Unless otherwise noted, behavior is considered to be normal Batch 20210306TR Source Tould Organism Dats Imperature (cm): 3.2 Day 5 Held at 15 ± 2°C (must be 30g) Day 5 Held			0	pH (units) (ra	ange: 5.5-8.5)					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		4.3 7.5	7.0		26	7.4				
Day 0 DO (mg/l) (70-100% saturation at test temp.) Day 0 DO (mg/l) (70-100% saturation at test temp.) Day 0 Do (mg/l) (70-100% saturation at test temp.) Day 0 Day 0 Day 0 Day 0 Day 0 Day 0 Day 0 Day 0 Day 0 Day 0 Day 0 Day 0 Day 0 Day 0 Day 0 Day 0 Day 0 Day 0 Day 0 Day 0 Day 0 Day 0 Day 0 Day 0 Day 0 Day 0 Day 0 <thday 0<="" th=""> <thday 0<="" th=""> <thday 0<="" th=""> <thday 0<<="" td=""><td>Day 4</td><td>0.0 0.0</td><td>0.0</td><td>7.9</td><td>7.9</td><td>7.9</td><td></td><td></td></thday></thday></thday></thday>	Day 4	0.0 0.0	0.0	7.9	7.9	7.9				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
Day 4 D0 (mg/L) (70-100% saturation at test temp.) Day 0 D0 (mg/L) (70-100% saturation at test temp.) Day 0 Day 0 Developerature (°) (range: 14-16°) Day 0 Day 0 Day 1 Difference Day 0 Day 0 Difference Number Alive (in brackets number stressed) Day 0 Day 0 Difference Number Alive (in brackets number stressed) Day 0 Difference Difference Difference Day 2 Difference Difference Difference Day 2 Difference Difference Difference Day 10 Difference Difference Difference Day 3 Difference Difference Difference Day 3 Difference Difference Difference Day 4 Difference Difference Difference Day 4 Difference Difference <thdifference< th=""> <thdifference< th=""></thdifference<></thdifference<>		MI LOID	ICCC.	EC (u	S/cm)					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-100 DOC	204	202	634	512				
Day 0 Temperature (C) (range: 14-16°C) Day 0 Number Alive (In brackets number stressed) Day 0 Number Alive (In brackets number stressed) Day 0 Number Alive (In brackets number stressed) Day 1 I I I Day 2 I I I I Day 3 I I I I I Day 3 I I I I I I Day 4 I I I I I I I Day 3 I I I I I I I I Day 4 I	Udy 4	401 511	1526	569	645	622		1		
Day 0 Temperature (C) (range: 14-16°C) Day 0 Number Alive (In brackets number stressed) Day 0 Number Alive (In brackets number stressed) Day 0 Number Alive (In brackets number stressed) Day 1 I I I Day 2 I I I I Day 3 I I I I I Day 3 I I I I I I Day 4 I I I I I I I Day 3 I I I I I I I I Day 4 I			DO (may	(1) (70-100% ca	turation at to	t tomm				
Temperature (°C) (range: 14-16°C) Temperature (°C) (range: 14-16°C) Day 0 Number Alive (In brackets number stressed) Day 0 Number Alive (In brackets number stressed) Day 0 Intervise (In brackets number stressed) Day 2 Day 3 Day 3 Day 4 Validity Criteria: must be ≤ 10% mortality and/of stressed behavior in the control Unless otherwise noted, behavior is considered to be normal Test Organism Information Bay 4 Validity Criteria: must be ≤ 10% mortality and/of stressed behavior in the control Unless otherwise noted, behavior is considered to be normal Test Organism Information Bay 4 Validity Criteria: must be ≤ 10% mortality and/of stressed behavior in the control Unless otherwise noted, behavior is considered to be normal Test Organism Information Bay 4 2.9 Day 5 Source Troutlodge Troutlodge Control Source Troutlod	Day 0	89 89	V CI	5 90		CI S		1		
Temperature (°C) (range: 14-16°C) Temperature (°C) (range: 14-16°C) Day 0 Number Alive (In brackets number stressed) Day 0 Number Alive (In brackets number stressed) Day 0 Intervise (In brackets number stressed) Day 1 Intervise (In 10 10 Intervise (In brackets number stressed) Day 2 Day 3 Day 4 Validity Criteria: must be ≤ 10% mortality and/of stressed behavior in the control Unless otherwise noted, behavior is considered to be normal Test Organism Information Bay 4 Validity Criteria: must be ≤ 10% mortality and/of stressed behavior in the control Unless otherwise noted, behavior is considered to be normal Test Organism Information Bay 4 2.0 Day 2 Source Troutlodge Troutlodge Man Length (cm): 3.2 3.4 O.5 Source Troutlodge Mean Length (cm): 2.9 </td <td>Day 4</td> <td>P.O. BP</td> <td>BA</td> <td>0000</td> <td>Zite</td> <td>42</td> <td></td> <td></td>	Day 4	P.O. BP	BA	0000	Zite	42				
Day 0 Day 0 Day 4 Day 0 Day 1 Day 2 Day 2 Day 2 Day 3 Day 4 Validity Criteria: must be $\leq 10\%$ mortality and/or stressed behavior in the control Unless otherwise noted, behavior is considered to be normal Test Organism Information Batch 20210306TR Source Troutlodge Tank # Control Length Weight Fish (cm) (g) 1 Control Length Weight Fish (cm) (g) Control Length Range (cm): Control Length Range (cm): Control Length Range (cm): Control Length Range (g): Control Control Length Range (g): Control Control Length Range (g): Control Control Length Range (g): Control Control Length Range (g): Control Control Length Range (g): Control Control Length Range (g): Control Control Length Range (g): Control Control Length Range (g): Control Control Length Range (g): Control Control Length Range (g): Control Control Length Range (g): Control Control Length Range (g): Control Control Length Range (g): Control Control Length Range (g): Control Control Control Length Range (g): Control Control Control Length Range (g): Control	-		0.0	0-6	0.0	0.0				
Number Alive (In brackets number stressed) Number Alive (In brackets number stressed) Day 0 Number Alive (In brackets number stressed) Day 1 IO IO Day 2 IO IO Day 3 IO IO August 10 IO IO Number Alive (In brackets number stressed) Day 3 Day 3 Day 10 IO IO Validity Criteria: must be ≤ 10% mortality and/or stressed behavior in the control Unless otherwise noted, behavior is considered to be normal Test Organism Information Batch 20210306TR Control Length Weight (gr): Control Bay 3 August be s0.5 g/L) Troutlodge Toutlodge Toutlodge Toutlodge August be s0.5 g/L) Bay 3 <th co<="" td=""><td></td><td>1</td><td>Те</td><td>em<mark>perature</mark> (°C)</td><td>(range: 14-16*</td><td>C)</td><td></td><td></td></th>	<td></td> <td>1</td> <td>Те</td> <td>em<mark>perature</mark> (°C)</td> <td>(range: 14-16*</td> <td>C)</td> <td></td> <td></td>		1	Те	em <mark>perature</mark> (°C)	(range: 14-16*	C)			
Number Alive (In brackets number stressed) Number Alive (In brackets number stressed) Day 0 Number Alive (In brackets number stressed) Day 1 Day 1 Day 2 Day 3 Day 4 Validity Criteria: must be \$ 10% mortality and/or stressed behavior in the control Unless otherwise noted, behavior is considered to be normal Test Organism Information Bay 4 Validity Criteria: must be \$ 10% mortality and/or stressed behavior in the control Unless otherwise noted, behavior is considered to be normal Test Organism Information Bay 4 Test Organism Information Bay 4 Day 5 Control Length Weight Fish Control Length Range (cm): 3.2 3.4 O O 3.4 O 3.4 O Control <th c<="" td=""><td>Day 0</td><td>14 19</td><td>14</td><td>IU.</td><td>1U</td><td>14</td><td></td><td></td></th>	<td>Day 0</td> <td>14 19</td> <td>14</td> <td>IU.</td> <td>1U</td> <td>14</td> <td></td> <td></td>	Day 0	14 19	14	IU.	1U	14			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Day 4	15 15	15	15	ic	12	1			
Day 0 Day 0 Day 1 Day 2 Day 3 Day 4 Validity Criteria: must be $\leq 10\%$ mortality and/or stressed behavior in the control Unless otherwise noted, behavior is considered to be normal trol Organism Data Control Length Weight Fish (cm) (g) 1 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 5 3 4 4 4 4 4 4 4 4 4 4 4 4 4				117		13				
Day 1 Day 2 Day 2 Day 3 Day 4 Validity Criteria: must be $\leq 10\%$ mortality and/or stressed behavior in the control Unless otherwise noted, behavior is considered to be normal Test Organism Information Batch 20210306TR Batch 20210306TR Batch 20210306TR Source Troutlodge Tank # 2 3 4 2 3 4 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	Day 0	10 11	Numbe							
Day 2 Day 3 Day 4 Day 10 Day 10 <thday 10<="" th=""> <thday 10<="" th=""> Day</thday></thday>					10					
Day 3 Day 4 Image: Control value Image: Control value <th control="" td="" value<<=""><td>•</td><td></td><td></td><td>10</td><td>10</td><td></td><td></td><td></td></th>	<td>•</td> <td></td> <td></td> <td>10</td> <td>10</td> <td></td> <td></td> <td></td>	•			10	10				
Day 4 Validity Criteria: must be $\leq 10\%$ mortality and/or stressed behavior in the control Unless otherwise noted, behavior is considered to be normal Test Organism Information Batch 20210306TR Batch 20210306TR Batch 20210306TR Source Troutlodge Tank # 2.9 0.3 5 3.1 0.3 6 3.1 0.4 8 a Length (cm): 3.2 1 ank # 2.9 0.3 5 a 1 0.4 8 a Length Range (cm): 2.9 - 3.6 7 a 3 0.4 8 a 2.0 0.4 9 a 2.0.4 1 weight Range: (g): 0.3 - 0.6 1 ank # 1 b 2.4 1 b 2.4 1 b 2.4 1 b 2.4 1 b 2.4 1 c 2.9 1 c 2.9				0		10				
Validity Criteria: must be $\leq 10\%$ mortality and/or stressed behavior in the control Unless otherwise noted, behavior is considered to be normal Test Organism Information Control Length Weight (cm) Control Length Weight (g) 1 3.1 0.3 Loading Density (g/L): 0.2 Source Troutlodge 2 3.44 0.53 Image: (g): 0.2 Source Troutlodge 3 3.44 0.53 Mean Length (cm): 3.2 Days Held at 15± 2°C Days Held at 15± 2°C 6 3.1 0.4 Length Range (cm): 2.9-3.6 Percent stock mortality 0 7 3.3 0.44 Mean Weight (g): 0.4 Percent stock mortality 0 9 3.2 0.44 Weight Range: (g): 0.3-0.6 Test Volume (L) Image: Stock mortality 0 9 3.2 0.44 Weight Range: (g): 0.3-0.6 Test Volume (L) Image: Stock mortality 0 9 3.2 0.44 Nean Weight (g): 0.3-0.6 Test Volume (L) Image: Stock mortality 0 10 3.2 <		10 10		0	IO	0				
Unless otherwise noted, behavior is considered to be normal $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Day 4	Validity Criteria: must be	10%			10		·		
Test Organism InformationControl FishLength (cm)Weight (g)Dading Density (g/L): (must be ≤ 0.5 g/L)D - 2 SourceBatch Troutlodge13.10.3 (must be ≤ 0.5 g/L)0.2 (must be ≤ 0.5 g/L)Source Troutlodge340.5 (must be ≤ 0.5 g/L)1 ank # (must be ≤ 0.5 g/L)43.40.3 (must be ≤ 0.5 g/L)Days Held at 15 ± 2°C (must be ≥ 14 days)53.10.4 (A (B)Length Range (cm): (Must be $\geq 0.3g$)Days Held at 15 ± 2°C (must be ≥ 14 days)93.20.4 (Must be $\geq 0.3g$)Mean Weight (g): (Must be $\geq 0.3g$)0.4 (Tays prior to test, must be $\leq 2\%$)103.20.4 (Must be $\geq 0.3g$)Test Volume (L)		Unless otherwise noted, beh	avior is consider	and/or stressed	behavior in the	control				
Control FishLength (cm)Weight (g)Batch20210306TR1 3.1 0.3 Loading Density (g/L): (must be ≤ 0.5 g/L) 0.2 SourceTroutlodge3 3.4 0.5 Mean Length (cm): 3.2 3.2 Tank # 1 4 2.9 0.3 Mean Length (cm): Length Range (cm): 3.2 Days Held at $15\pm 2^{\circ}C$ (must be ≥ 14 days)6 3.1 0.4 Length Range (cm): 0.4 Percent stock mortality (7 days prior to test, must be $\leq 2\%$)9 3.2 0.4 Weight Range: (g): $0.3-0.6$ Test Volume (L)			arior is considere		1					
Fish (cm) (g) a diagonal frequence of the second sec						Test Organisn	Information			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		5 5								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FISH	(cm) (g)				Batch 🔬	20210306TR			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	21 10 7		<i>(</i>	A 2	3		20		
3 3 4 0.5 4 2.9 0.3 5 3.1 0.3 6 3.1 0.4 1 0.4 Length Range (cm): 2.9-3.6 7 3.3 0.4 8 0.4 9 3.2 0.4 Mean Weight (g): 0.4 (Must be $\ge 0.3g$) (7 days prior to test, must be $\le 2\%$) 10 3.2 0.4 Weight Range: (g): 0.3-0.6 Test Volume (L) 1		30 0.5			0.4	Source	Troutlodge			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			itmust be ≤0.5 g/L)			11				
5 6 7 8 9 3 2 9 3 2 0 4 Weight Range: (g): 0 3 2 9 3 2 0 4 Days Held at $15\pm 2^{\circ}C$ (must be $\ge 14 \text{ days})$ Percent stock mortality (7 days prior to test, must be $\le 2\%$) Weight Range: (g): 0 3 2 0 4 Weight Range: (g): 0 3 2 0 4 Volume (L)		24 0.2	Maan I		22	Tank #	1	2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			iviean Length (d	cm):			11			
7 8 9 10 $3 \cdot 2$ $0 \cdot 4$ Mean Weight (g): (Must be $\ge 0.3g$) Weight Range: (g): $0 \cdot 4$ $0 \cdot 4$ Percent stock mortality (7 days prior to test, must be $\le 2\%$) Test Volume (L)					021			33		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		22 04	Length Range (.cm): Z		(must be ≥14 day	/5)			
9 10 3.2 Weight Range: (g): Weight Range: (g): 0.3-0.6 Test Volume (L) Test Volume (L)					A 11			~		
10 3-2 0.4 Weight Range: (g): 0.3-0.6 Test Volume (L)				g): 			-,			
Weight Range: (g): 0.3-0.6 Test Volume (L)		20 0.4	(Must be ≥0.3g)			7 days prior to te	st, must be ≤2%)			
nments :	10	2.2 0.4	Weight Passes		2-61	# 71	、 、	04725		
			weight kange:	(g): O	3-0.6	rest Volume (L) 3	18		
Reviewed By: D	nments :						-			
Reviewed By: D										
Reviewed By: D										
Reviewed By: IN Date Previewed VID II OK 100			1				0 - 1	clala		
		Reviewed By:	N		D	ate Reviewed:	voulo	5100		

APPENDIX C – Chain-of-custody form

HydroQual

Laboratories Ltd.

#3, 6125 12th Street SE Calgary, Alberta Canada T2H 2K1 Tel (403) 253-7121 Fax (403) 252-9363

Test Request / Chain of Custody

Reporting and Billing Ir	nformation Client:	ARUC Sample:	Fer 116						on bac	:k) :s, TR-D)
Client / Operation: FE	RNIE ALPINE RESORT UTILITI	ES CORPORATION				D				
Contact: PATRIC	CK MAJER			ŝ	LC	50				ample
Report Address: 15	05 - 17TH AVENUE S.W. CALG	ARY, ALBERTA T2T 0E	2							Rece
Billing Address: 15	05 - 17TH AVENUE S.W. CALG	ARY, ALBERTA T2T 0E	2							ived i
Quote/PO/Job	403 - 861 - 8730	Fax 1 - 403 - 244 - 377	74							Sample Received intact (y / n)
	6 surcharge (evenings and weekends)			-						le treatments
Sample ID	Sampled By / Date / Time	Location	Method	Туре		ск аррг	opriate	e box b	elow	
WASTEWATER	Carter/ April 28, 2021 / 11:30	Fernie Alpine Resort	Grab	Effluent	X					
mantoulin	2021/04/2911:00									
2×201 Pails	JCC/JC				-					
12.5°C	2021-1330									
NSINI										
GOOD CONDITIO	nw									
Relinquished By	Date / Time	Received E	By (HQ)		Date / Tim	е				
Carter Barrett	April 28/ 21 @ 11:30									

Written by SG on 1995/05/12 Revised by KS on 2002/12/09

Carter Barrett

HydroQual Laboratories Ltd.

File: F2000020.xls / test request Form: F2000020 v 3.0

END OF REPORT

Acute Toxicity Test Results

Sample collected October 20, 2021

Final Report

November 29, 2021

Submitted to:

Fernie Alpine Resort Calgary, AB

10823 27 Street SE, Calgary, AB T2Z 3V9

SAMPLE INFORMATION

Complet ID (Dates		Dessint	
Sample ID/ Internal ID	Collected	Received	Rainbow trout test initiation	Receipt temperature	
WASTEWATER/	20-Oct-21 at 0945h	21-Oct-21 at 0930h	24-Oct-21 at 1350h	12.5°C	
2122-0396	20-001-21 at 094511	21-001-21 at 095011	24-0Cl-21 at 155011	12.5 C	

TEST TYPES

• Rainbow trout 96-h LC50 test

RESULTS

Toxicity test results

Sample ID	Rainbow trout LC50 (% v/v)
WASTEWATER	>100

LC = Lethal Concentration

QA/QC

QA/QC summary	Rainbow trout
Reference toxicant LC50 (95% CL)	3.3 (2.9-3.8) g/L KCl ¹
Reference toxicant historical mean (2 SD Range)	3.5 (2.7-4.5) g/L KCl
Reference toxicant CV	8.3%
Organism health history	Acceptable
Protocol deviations	None
Water quality range deviations	None
Control performance	Acceptable
Test performance	Valid

¹ Test date, October 27, 2021

LC = Lethal Concentration; CL = Confidence Limit, SD = Standard Deviation; CV = Coefficient of Variation

M. Fritz

Report By: Michelle Fritz, BSc Biologist

tio

Reviewed By: Courtney Bogstie, BSc Senior Biologist

This report has been prepared by Nautilus Environmental Company Inc. based on data and/or samples provided by our client and the results of this study are for their sole benefit. Any reliance on the data by a third party is at the sole and exclusive risk of that party. The results presented here relate only to the samples tested.

APPENDIX A – Summary of test conditions

Test species	Oncorhynchus mykiss
Organism source	Fish hatchery
Organism age	Juvenile
Test type	Static
Test duration	96 hours
Test vessel	5 gallon glass aquariums
Test volume	10 - 20 L, depending on size of fish
Test solution depth	Minimum 15 cm
Test concentrations	Five concentrations, plus laboratory control
Test replicates	1 per treatment
Number of organisms	10 per replicate
Control/dilution water	De-chlorinated City of Calgary tap water
Test solution renewal	None
Test temperature	15 ± 1°C
Feeding	None
Light intensity	100 to 500 lux
Photoperiod	16 hours light/8 hours dark
Aeration	6.5 ±1 mL/min/L
Test Measurements	pH, conductivity, dissolved oxygen and temperature were measured at test initiation and test completion; salinity measured at test initiation; evaluated for survival daily
Test protocol	Environment Canada (2000), EPS 1/RM/13, with 2007 & 2016 amendments
Statistical software	None
Test endpoints	96-hour LC50
Test acceptability criteria for controls	Survival ≥ 90%
Reference toxicant	Potassium chloride (KCl)

Table 1.Summary of test conditions: 96-h rainbow trout (Oncorhynchus mykiss)
survival test.

APPENDIX B – Toxicity test data

MAIITHIC

Trout Bench Sheet

Method	TRD	Client	FER116	Reference	2122-0396		Chamber	
Fest Log							Sample Infor	mation
						Daily Data	_	1
Day		Date	Time	Initial	Chem. Cart	Review	Initial pH:	7.8
0		24/2021	1350 *	JCC/DW		EV.	Initial EC (µS/	cm): 866
1		25/2021	Dew	AW	-	W.	Salinity (ppt):	0
2		26/2021	0950	CC		EV.		<u></u>
3	10/	27/2021	1020	CC.	1273	EV		
4	10/3	28/2021	0201	ec	10 M	Aw	1	
Preaeration 1 DO(mg/L) of Femp (°C) of	e adjusted to 6. time [:] 100%	5 +/- 1 mL/min/ 0 hours	Allightson (1006	1 hour	: was loaded wit 1.5 hours	2 hours	DO in mg/L (saturation)** 6.2 mg/L - 8.9 mg 6.1 mg/L - 8.8 mg 6.0 mg/L - 8.6 mg *corrected for al	g/Lat 14°C g/Lat 15°C g/Lat 16°C
Conc.	CTL	6.2	12.5	25	50	100		1
		0.2	12.5		50	100		
				pH (units) (range: 5.5-8.5)	7.6	-0	
Day 0	145	17.5	17.5	13.0	110	1001	q.	1
Day 4	8.7	8.7	07	8.7	91	20		
,		1 200	0.2		0.0		-	
				EC	(uS/cm)			N
Day 0	433	462	485	555	122	\$13		
Day 4	438	463	489	557	627	820		
Day 0 Day 4	8.2 8.8	7.9	7.9	8.0	Saturation at te	8.8		
Day 0	15	15	15	15	15	15		
Day 4	15	15	15	als I	0110	16		
			Numbe	er Alive (In bra	ackets number s	tressed)		
Day 0	1	0 10			0 10			
Day 1	0	0	N	N	10	10		
Day 2	10	10	10	in	10	10		
Day 3	10	900	10	10	10	10		
Day 4	10	8	a	10	110	18		
		eria: must be ≤				he control		
	Unless other	wise noted, beha	avior is consider	red to be norr	mal			
ontrol Org	anism Data					Test Organis	m Information	Ú
Control	Length	Weight				CONSUCTOR REPORT		
Fish	(cm)	(g)				Batch	20211007TR	-
1 2	2.9	0.2	Loading Densi		<u>6.2</u>	Source	Lyndon	_
3	31	0.5	(must be ≤0.5 g/L)		Tool 4		
4	20		Mean Length ((cm):	3.0	Tank #	s3	5
5	30		imean Length (um).	0.0		15. 2%	9
6	24	0.3	Length Range	(cm);	2,4-3.7	Days Held at		1
б 7		0.5	Length Kange	(cm): Z	- CL OFF	(must be ≥14 d	ays)	
8	3.0	0.3	Mann Maintel	(-).	0.3			6.3
	3.2	0,3	Mean Weight	(g):	<u> </u>	Percent stock		0)
9	314	0.4	(Must be ≥0,3g)			days prior to t	est, must be ≤2%)	
10	2.0	0.3	J		0.2-0.5			12
	-		Weight Range	: (g):	3	Test Volume	(L)	1

______Reviewed By: _____

Comments :

TP

Date Reviewed: NOV 0 2 2021

APPENDIX C – Chain-of-custody form

HydroQual	
Laboratories Ltd.	Test Request / Chain of Custody

Reporting and Billing Information Sample: Fer 116 Client: FARUC Tests Requested (codes on back) (example: trout with 5 treatments, TR-D) Client / Operation: FERNIE ALPINE RESORT UTILITIES CORPORATION TRID Sample Received intact (y / n) Contact: PATRICK MAJER LC 50 Report Address: 1505 - 17TH AVENUE S.W. CALGARY, ALBERTA T2T 0E2 Billing Address: 1505 - 17TH AVENUE S.W. CALGARY, ALBERTA T2T 0E2 Tel Fax 1 - 403 - 861 - 8730 1 - 403 - 244 - 3774 Quote/PO/Job Rush: 50% surcharge; 100% surcharge (evenings and weekends) Notes: S = single treatment, D = multiple treatments Sample ID Sampled By / Date / Time Location Method Type Check appropriate box below WASTEWATER Fernie Alpine Resort Grab Effluent х Carter/ Oct 20, 2021 / 9:45 2122-0396 2021/10/21 09:30 Manitoralin JC. 2x201 poils Not Condition 2,5%

Relinquished By	Date / Time	Received By (HQ)	Date / Time
Carter Barrett	Oct 20 @ 10:00		

Written by SG on 1995/05/12 Revised by KS on 2002/12/09

HydroQual Laboratories Ltd.

File: F2000020.xls / test request Form: F2000020 v 3.0

#3, 6125 12th Street SE

Tel (403) 253-7121 Fax (403) 252-9363

Calgary, Alberta Canada T2H 2K1

END OF REPORT

Acute Toxicity Test Results

Sample collected January 12, 2022

Final Report

February 1, 2022

Submitted to: Fernie Alpine Resort Fernie, BC

10823 27 Street SE, Calgary, AB T2Z 3V9

SAMPLE INFORMATION

Sample ID/ Dates Internal ID Collected Received Rainbow trout test		Dessint		
Internal ID	Collected	Received	Rainbow trout test initiation	Receipt temperature
WASTEWATER /	12-Jan-22 at 1000h	13-Jan-22 at 0930h	14-Jan-22 at 1415h	11.7°C
2122-1096	12-Jan-22 at 100011	13-Jan-22 at 095011	14-Jan-22 at 141511	11.7 C

TEST TYPES

• Rainbow trout 96-h LC50 test

RESULTS

Toxicity test results

Sample ID	Sample IDRainbow trout LC50 (% v/v)WASTEWATER>100
WASTEWATER	>100

LC = Lethal Concentration

QA/QC

QA/QC summary	Rainbow trout
Reference toxicant LC50 (95% CL)	3.3 (2.8-3.9) g/L KCl ¹
Reference toxicant historical mean (2 SD Range)	3.4 (2.6-4.5) g/L KCl
Reference toxicant CV	9.1%
Organism health history	Acceptable
Protocol deviations	See Below
Water quality range deviations	None
Control performance	Acceptable
Test performance	Valid

¹Test date, December 30, 2021

LC = Lethal Concentration; CL = Confidence Limit, SD = Standard Deviation; CV = Coefficient of Variation

The 100% test vessel leaked between day 1 and day 2 of testing and the volume in the test vessel was reduced to 13L, consequently the control test vessel and 100% test sample volumes were not consistent on day 2 resulting in a protocol deviation. The control volume was subsequently adjusted to match the test volume.

that lee.

Report By: Shae Cole, BSc Biologist

Reviewed By: Kayla Knol, P. Biol. Senior Biologist

This report has been prepared by Nautilus Environmental Company Inc. based on data and/or samples provided by our client and the results of this study are for their sole benefit. Any reliance on the data by a third party is at the sole and exclusive risk of that party. The results presented here relate only to the samples tested.

APPENDIX A – Summary of test conditions

Test species	Oncorhynchus mykiss
Organism source	Fish hatchery
Organism age	Juvenile
Test type	Static
Test duration	96 hours
Test vessel	5 gallon glass aquariums
Test volume	10 - 20 L, depending on size of fish
Test solution depth	Minimum 15 cm
Test concentrations	Five concentrations, plus laboratory control
Test replicates	1 per treatment
Number of organisms	10 per replicate
Control/dilution water	De-chlorinated City of Calgary tap water
Test solution renewal	None
Test temperature	15 ± 1°C
Feeding	None
Light intensity	100 to 500 lux
Photoperiod	16 hours light/8 hours dark
Aeration	6.5 ± 1 mL/min/L
Test Measurements	pH, conductivity, dissolved oxygen and temperature were measured at test initiation and test completion; salinity measured at test initiation; evaluated for survival daily
Test protocol	Environment Canada (2000), EPS 1/RM/13, with 2007 & 2016 amendments
Statistical software	None
Test endpoints	96-hour LC50
Test acceptability criteria for controls	Survival ≥ 90%
Reference toxicant	Potassium chloride (KCl)

Table 1.Summary of test conditions: 96-h rainbow trout (Oncorhynchus mykiss)
survival test.

APPENDIX B – Toxicity test data

Trout Bench Sheet

Method	TRD	Client	FER116	Reference	2122-1096		Chamber	3
Test Log							-	
					T	Daily Data	Sample Infor	mation
Day		Date	Time	Initial	Chem, Cart	Review	Initial pH:	- 1
0	202	2/01/14	1415 .	CC/EP	1	Review	Initial EC (µS/d	Tolard
1	202	2/01/15	0855	CC	(e) -	- Ch	Salinity (ppt):	110 - 170
2	202	2/01/16	0970	100	4	1/91		
3	202	2/01/17	1110	KINIJO	-	NF		
4	202	2/01/18	1120	ANICH		VXC.	1	1
Preaeration DO(mg/L) o Temp (*C) o Test Chemi	te adjusted to 6. time of 100%	0 hours 8.9 15		1 hour	was loaded wit 1.5 hours	2 hours	DO in mg/L (saturation)** 6.2 mg/L - 8.9 mg 6.1 mg/L - 8.8 mg 6.0 mg/L - 8.6 mg **corrected for alt	//Lat 14°C //Lat 15℃ //Lat 16℃
Conc	CTL	6.25	12.5	25	50	100		
Day 0	20	1.0		pH (units) (r	ange: 5.5-8.5)			
Day 0 Day 4	80	8:1	81	2.0	7.9	7.6		
Day 4	6.2	0+2	6.2	0.7	e.1	0.0		
					1000	_		
Day 0	11-10	1			IS/cm)			
Day 0 Day 4	471	505	541	606	736	986		
Day 4	477	501	536	601	727	964		12
David	100	2.0	DO (mg/l	.) (70-100% sa	aturation at te	st temp.)		
Day 0	8.8	8.8	8.8	8.8	8.8	2.8		
Day 4	6.6	8.0	6.6	0.0	0.9	PP		
						0		
			Te	mperature (°C)	(range: 14-16	'C)		
Day 0	15	15	15	15	15	15		1
Day 4	16	15	14	15	15	12		
		1	1.3		13			
			Numbe	r Alive (In brac	kets number st	ressed)		
Day 0	10	10	10	10	10	10		-
Day 1	10	10	16	10	16	10		
Day 2	10	01	11	10	10.	10		
Day 3	VO	iõ	1000		1(4)	INT		
Day 4	10	10	9	9(1)	e			
	Validity Crite	ria: must be ≤	10% mortality a	nd/or stresser	hebayior in th	160		
	Unless otherw	ise noted, beha	avior is considere	d to be norm:	al	le control -		
					31			
Control Orga	anism Data					Test Organism	a Information	
Control	Length	Weight				rest organish	in information	
Fish	(cm)	(g)				Batch	20211214TR	
1	3.1	0.2	Loading Density	(a/l)·	02	Source	Emple V. J.	
2	31	N.E	(must be ≤0.5 g/L)	(g/ c).	V- Los	Source	Smoky Trout Fa	arm
3	3.1	0.3	and the set of the g, t/			Tank #	4	
4	3.0	0.2	Mean Length (cr	m).	27	Tank *		
5	3.2	0.2	cingar (ci		0.1	Days Held at 1	5	00
6	3.4	010	Length Range (o	·m).	N 37			32
7	3A	27	congun Nange (C	ang. 🚬	39-32	(must be ≥14 day	's)	
8	3.0	2.7	Mean Weight (g	١.	1. 2	D	4 19	0.1
9	211	00	(Must be ≥0.3q)	/		Percent stock r		0.1
10	2 2	8:4	(Must be 20.5g)			(7 days prior to tes	t, must be ≤2%)	
	-012-1	0.5	l Weight Range: (g):	5.2-05	Test Volume (L)	18
om month							1	
Comments :								
_								
		B 1 1-	E/				2000	101121
		Reviewed By:	<u>`</u> `		D	ate Reviewed:	2022	101120
							1	1-1

APPENDIX C – Chain-of-custody form

Laboratories Ltd. HydroQual

Test Request / Chain of Custody

#3, 6125 12th Street SE

Calgary, Alberta Canada T2H 2K1

Fax (403) 252-9363 Tel (403) 253-7121

Tests Requested (codes on back)

Reporting and Billing Information

Sample: Fer 116 FARUC Client:

FERNIE ALPINE RESORT UTILITIES CORPORATION		TR D			TR D	s, TR-I
		LC 50	50			
1505 - 17TH AVENUE S.W. CALGARY, ALBERTA T2T 0E2						Rece
1505 - 17TH AVENUE S.W. CALGARY, ALBERTA T2T 0E2				_		
1 - 403 - 861 - 8730 Fax			,			
	1					() / .
Rush: 50% surcharge; 100% surcharge (evenings and weekends)		_				•,
Sampled By / Date / Time Location Method Tvpe	Φ	Notes: Chec	Notes: S = single treatment, D = multiple treatments Check appropriate box below	treatment, I	D = multip Delow	le treatm
Control 1 40 0000 Edition Fernie Alnine Resort Grab Effluent	nt	×				-

Check appropri	×						
		1			1		 1
Type	Effluent						
Method Type	Grab						
Location	esort						
Sampled By / Date / Time	Carter/ Jan 12, 2022 / 10:00						
Sample ID	WASTEWATER	2122-1095 2022/01/13	Monitarlin	220 Lovils	NoS/NEL Doco Condition	706.11	

Written by SG on 1995/05/12 Revised by KS on 2002/12/09

HydroQual Laboratories Ltd.

Date / Time

Received By (HQ)

Jan 12, 2022 / 10:00

Date / Time

Relinquished By Carter Barrett File: F2000020.xls / test request Form: F2000020 v 3.0

Edited by Foxit Reader Copyright(C) by Foxit Software Company,2005-2007 For Evaluation Only.

END OF REPORT